23 research outputs found
Biosurfactants’ multifarious functional potential for sustainable agricultural practices
Increasing food demand by the ever-growing population imposes an extra burden on the agricultural and food industries. Chemical-based pesticides, fungicides, fertilizers, and high-breeding crop varieties are typically employed to enhance crop productivity. Overexploitation of chemicals and their persistence in the environment, however, has detrimental effects on soil, water, and air which consequently disturb the food chain and the ecosystem. The lower aqueous solubility and higher hydrophobicity of agrochemicals, pesticides, metals, and hydrocarbons allow them to adhere to soil particles and, therefore, continue in the environment. Chemical pesticides, viz., organophosphate, organochlorine, and carbamate, are used regularly to protect agriculture produce. Hydrophobic pollutants strongly adhered to soil particles can be solubilized or desorbed through the usage of biosurfactant/s (BSs) or BS-producing and pesticide-degrading microorganisms. Among different types of BSs, rhamnolipids (RL), surfactin, mannosylerythritol lipids (MELs), and sophorolipids (SL) have been explored extensively due to their broad-spectrum antimicrobial activities against several phytopathogens. Different isoforms of lipopeptide, viz., iturin, fengycin, and surfactin, have also been reported against phytopathogens. The key role of BSs in designing and developing biopesticide formulations is to protect crops and our environment. Various functional properties such as wetting, spreading, penetration ability, and retention period are improved in surfactant-based formulations. This review emphasizes the use of diverse types of BSs and their source microorganisms to challenge phytopathogens. Extensive efforts seem to be focused on discovering the innovative antimicrobial potential of BSs to combat phytopathogens. We discussed the effectiveness of BSs in solubilizing pesticides to reduce their toxicity and contamination effects in the soil environment. Thus, we have shed some light on the use of BSs as an alternative to chemical pesticides and other agrochemicals as sparse literature discusses their interactions with pesticides. Life cycle assessment (LCA) and life cycle sustainability analysis (LCSA) quantifying their impact on human activities/interventions are also included. Nanoencapsulation of pesticide formulations is an innovative approach in minimizing pesticide doses and ultimately reducing their direct exposures to humans and animals. Some of the established big players and new entrants in the global BS market are providing promising solutions for agricultural practices. In conclusion, a better understanding of the role of BSs in pesticide solubilization and/or degradation by microorganisms represents a valuable approach to reducing their negative impact and maintaining sustainable agricultural practices
Integrated Remediation Processes Toward Heavy Metal Removal/Recovery From Various Environments-A Review
Addressing heavy metal pollution is one of the hot areas of environmental research. Despite natural existence, various anthropomorphic sources have contributed to an unusually high concentration of heavy metals in the environment. They are characterized by their long persistence in natural environment leading to serious health consequences in humans, animals, and plants even at very low concentrations (1 or 2 μg in some cases). Failure of strict regulations by government authorities is also to be blamed for heavy metal pollution. Several individual treatments, namely, physical, chemical, and biological are being implied to remove heavy metals from the environment. But, they all face challenges in terms of expensiveness and in-situ treatment failure. Hence, integrated processes are gaining popularity as it is reported to achieve the goal effectively in various environmental matrices and will overcome a major drawback of large scale implementation. Integrated processes are the combination of two different methods to achieve a synergistic and an effective effort to remove heavy metals. Most of the review articles published so far mainly focus on individual methods on specific heavy metal removal, that too from a particular environmental matrix only. To the best of our knowledge, this is the first review of this kind that summarizes on various integrated processes for heavy metal removal from all environmental matrices. In addition, we too have discussed on the advantages and disadvantages of each integrated process, with a special mention of the few methods that needs more research attention. To conclude, integrated processes are proved as a right remedial option which has been detaily discussed in the present review. However, more research focus on the process is needed to challenge the in situ operative conditions. We believe, this review on integrated processes will surely evoke a research thrust that could give rise to novel remediation projects for research community in the future
Statistical optimization for lipase production from solid waste of vegetable oil industry
<p>The production of biofuel using thermostable bacterial lipase from hot spring bacteria out of low-cost agricultural residue olive oil cake is reported in the present paper. Using a lipase enzyme from <i>Bacillus licheniformis</i>, a 66.5% yield of methyl esters was obtained. Optimum parameters were determined, with maximum production of lipase at a pH of 8.2, temperature 50.8°C, moisture content of 55.7%, and biosurfactant content of 1.693 mg. The contour plots and 3D surface responses depict the significant interaction of pH and moisture content with biosurfactant during lipase production. Chromatographic analysis of the lipase transesterification product was methyl esters, from kitchen waste oil under optimized conditions, generated methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate.</p
Biosurfactants produced by Bacillus subtilis A1 and Pseudomonas stutzeri NA3 reduce longevity and fecundity of Anopheles stephensi and show high toxicity against young instars
Anopheles stephensi acts as vector of Plasmodium parasites, which are responsible for malaria in tropical and subtropical areas worldwide. Currently, malaria management is a big challenge due to the presence of insecticide-resistant strains as well as to the development of Plasmodium species highly resistant to major antimalarial drugs. Therefore, the present study focused on biosurfactant produced by two bacteria Bacillus subtilis A1 and Pseudomonas stutzeri NA3, evaluating them for insecticidal applications against malaria mosquitoes. The produced biosurfactants were characterized using FT-IR spectroscopy and gas chromatography-mass spectrometry (GC-MS), which confirmed that biosurfactants had a lipopeptidic nature. Both biosurfactants were tested against larvae and pupae of A. stephensi. LC50 values were 3.58 (larva I), 4.92 (II), 5.73 (III), 7.10 (IV), and 7.99 (pupae) and 2.61 (I), 3.68 (II), 4.48 (III), 5.55 (IV), and 6.99 (pupa) for biosurfactants produced by B. subtilis A1 and P. stutzeri NA3, respectively. Treatments with bacterial surfactants led to various physiological changes including longer pupal duration, shorter adult oviposition period, and reduced longevity and fecundity. To the best of our knowledge, there are really limited reports on the mosquitocidal and physiological effects due to biosurfactant produced by bacterial strains. Overall, the toxic activity of these biosurfactant on all young instars of A. stephensi, as well as their major impact on adult longevity and fecundity, allows their further consideration for the development of insecticides in the fight against malaria mosquitoes