87 research outputs found

    In Retrospect: A Case of Merger in Higher Education

    Get PDF
    Purpose - This study examines the merger of two distinct higher education institutions. The change process was studied from the perspective of multiple stakeholders, and its major outcomes were evaluated in terms of various dimensions of success. Design/methodology/approach - The study uses a qualitative research design. Semi-structured interviews with open-ended questions were used, targeting key decisions makers, faculty and students that led or experienced the change process. Findings - Although the merger deal appeared good on paper, it was not executed as well as it could have been, and the aftermath yielded lower than expected returns. The systems were not integrated properly, and cultural elements were overlooked, resulting in an anomic organizational environment, in place of what should have been a more cohesive academic community. Originality/value - This study contributes to the literature by using a micro level approach to study an institutional merger by targeting the perception of key university constituencies, thereby providing in-depth analysis and a multidimensional outlook

    Design of Variation-Tolerant Circuits for Nanometer CMOS Technology: Circuits and Architecture Co-Design

    Get PDF
    Aggressive scaling of CMOS technology in sub-90nm nodes has created huge challenges. Variations due to fundamental physical limits, such as random dopants fluctuation (RDF) and line edge roughness (LER) are increasing significantly with technology scaling. In addition, manufacturing tolerances in process technology are not scaling at the same pace as transistor's channel length due to process control limitations (e.g., sub-wavelength lithography). Therefore, within-die process variations worsen with successive technology generations. These variations have a strong impact on the maximum clock frequency and leakage power for any digital circuit, and can also result in functional yield losses in variation-sensitive digital circuits (such as SRAM). Moreover, in nanometer technologies, digital circuits show an increased sensitivity to process variations due to low-voltage operation requirements, which are aggravated by the strong demand for lower power consumption and cost while achieving higher performance and density. It is therefore not surprising that the International Technology Roadmap for Semiconductors (ITRS) lists variability as one of the most challenging obstacles for IC design in nanometer regime. To facilitate variation-tolerant design, we study the impact of random variations on the delay variability of a logic gate and derive simple and scalable statistical models to evaluate delay variations in the presence of within-die variations. This work provides new design insight and highlights the importance of accounting for the effect of input slew on delay variations, especially at lower supply voltages. The derived models are simple, scalable, bias dependent and only require the knowledge of easily measurable parameters. This makes them useful in early design exploration, circuit/architecture optimization as well as technology prediction (especially in low-power and low-voltage operation). The derived models are verified using Monte Carlo SPICE simulations using industrial 90nm technology. Random variations in nanometer technologies are considered one of the largest design considerations. This is especially true for SRAM, due to the large variations in bitcell characteristics. Typically, SRAM bitcells have the smallest device sizes on a chip. Therefore, they show the largest sensitivity to different sources of variations. With the drastic increase in memory densities, lower supply voltages and higher variations, statistical simulation methodologies become imperative to estimate memory yield and optimize performance and power. In this research, we present a methodology for statistical simulation of SRAM read access yield, which is tightly related to SRAM performance and power consumption. The proposed flow accounts for the impact of bitcell read current variation, sense amplifier offset distribution, timing window variation and leakage variation on functional yield. The methodology overcomes the pessimism existing in conventional worst-case design techniques that are used in SRAM design. The proposed statistical yield estimation methodology allows early yield prediction in the design cycle, which can be used to trade off performance and power requirements for SRAM. The methodology is verified using measured silicon yield data from a 1Mb memory fabricated in an industrial 45nm technology. Embedded SRAM dominates modern SoCs and there is a strong demand for SRAM with lower power consumption while achieving high performance and high density. However, in the presence of large process variations, SRAMs are expected to consume larger power to ensure correct read operation and meet yield targets. We propose a new architecture that significantly reduces array switching power for SRAM. The proposed architecture combines built-in self-test (BIST) and digitally controlled delay elements to reduce the wordline pulse width for memories while ensuring correct read operation; hence, reducing switching power. A new statistical simulation flow was developed to evaluate the power savings for the proposed architecture. Monte Carlo simulations using a 1Mb SRAM macro from an industrial 45nm technology was used to examine the power reduction achieved by the system. The proposed architecture can reduce the array switching power significantly and shows large power saving - especially as the chip level memory density increases. For a 48Mb memory density, a 27% reduction in array switching power can be achieved for a read access yield target of 95%. In addition, the proposed system can provide larger power saving as process variations increase, which makes it a very attractive solution for 45nm and below technologies. In addition to its impact on bitcell read current, the increase of local variations in nanometer technologies strongly affect SRAM cell stability. In this research, we propose a novel single supply voltage read assist technique to improve SRAM static noise margin (SNM). The proposed technique allows precharging different parts of the bitlines to VDD and GND and uses charge sharing to precisely control the bitline voltage, which improves the bitcell stability. In addition to improving SNM, the proposed technique also reduces memory access time. Moreover, it only requires one supply voltage, hence, eliminates the need of large area voltage shifters. The proposed technique has been implemented in the design of a 512kb memory fabricated in 45nm technology. Results show improvements in SNM and read operation window which confirms the effectiveness and robustness of this technique

    Evaluating Potable Water Production of a Single Slope Solar Still for Waste Water under Jordan Climate Conditions

    Get PDF
    The scarcity of potable water constitutes a major problem in underdeveloped and also some developing countries. Economical and applicable water desalination solar still coupled with a solar collector was designed and investigated experimentally. Solar still can be considered an appropriate solution for solving the water scarcity in remote and semi-arid areas. The aim of this work is to determine the performance and productivity of a single slope solar still system using different operational parameters such as ambient temperature and solar intensity. The experimental results showed that water production is significantly affected by the solar radiation intensity during the day and the instantaneous productivity of distilled water increases gradually during the experiment. The water production reaches its maximum value of 0.13 L/m² at 13:00 pm were the solar radiation is higher. Keywords: Feed water, Instantaneous productivity, solar still, solar radiation intensity, Potable water

    The Role of Civic Education in Promoting Diversity and Tolerance in Schools

    Get PDF
    In the era of globalisation, social diversity is increasingly becoming common in society. This diversity can manifest in various forms, such as differences in religion, ethnicity, race, and culture. This diversity is often a source of conflict and tension in society. Schools as one of the educational institutions are expected to contribute to creating a harmonious and peaceful society, where diversity is accepted and respected. This study aims to analyse the role of civic education in enhancing diversity and tolerance in schools. This research is qualitative in nature. Data collection techniques include listening and recording important information to conduct data analysis through data reduction, data display, and conclusion drawing. This study shows the results that civic education has an important role in improving diversity and tolerance in schools. Through civic education, students can understand national values, rights and obligations as citizens, and develop an attitude of tolerance towards cultural, religious and ethnic differences

    Biologically guided isolation and ADMET profile of new factor Xa inhibitors fromGlycyrrhiza glabraroots usingin vitroandin silicoapproaches

    Get PDF
    Selective factor Xa inhibitors effectively block coagulation cascade with a broader therapeutic window than multitargeted anticoagulants. They have evolved as a crucial part of prevention and treatment of thromboembolic diseases and in therapeutic protocols involved in many clinical trials in coronavirus disease 2019 (COVID-19) patients. Biologically-guided isolation of specific FXa inhibitors from licorice (Glycyrrhiza glabra) root extract furnished ten flavonoids. By detailed analysis of their1H,13C NMR and MS data, the structures of these flavonoids were established as 7,4′-dihydroxyflavone (1), formononetin (2), 3-R-glabridin (3), isoliquiritigenin (4), liquiritin (5), naringenin 5-O-glucoside (6), 3,3′,4,4′-tetrahydroxy-2-methoxychalcone (7), liquiritinapioside (8) and the two isomers isoliquiritigenin-4′-O-β-d-apiosylglucoside (9) and isoliquiritigenin-4-O-β-d-apiosylglucoside (10). All the isolated compounds were assessed for their FXa inhibitory activity usingin vitrochromogenic assay for the first time. Liquirtin (5) showed the most potent inhibitory effects with an IC50of 5.15 μM. The QikProp module was implemented to perform ADMET predictions for the screened compounds

    Biohydrogen Production by Modified Anaerobic Fluidized Bed Reactor (AFBR) Using Mixed Bacterial Cultures in Thermophilic Condition

    Get PDF
    Anaerobic fluidized bed reactor (AFBR) with slight modifications was investigated to increase biohydrogen production at high temperature. The modifications include a decrease in the total liquid volume to 3.3 L, in addition to an external work in the form of high temperatures, high dilution rates and high rates of de-gassed effluent recycling. These modifications were applied to overcome the thermodynamic constrains preventing the simultaneous achievement of high hydrogen yield (HY) and hydrogen productivity (HP) in an (AFBR). Bacterial granulation successfully induced under a high temperature of 65oC. The bacterial granules consisted of a multispecies bacterial consortium comprised of thermophilic clostridial and enterobacter species. Hydrogen production rate (HPR) of 7.57 L H2/L/h and hydrogen yield of 5.82 mol H2/ mol glucose were achieved at a hydraulic retention time (HRT) of 1 h and effluent recycle rate of 3.6 L/ min, with V/F er equal to 0.9

    Seribu islands in the megacities of Jakarta on the frontlines of the climate crisis

    Get PDF
    Jakarta, the biggest city in Indonesia, has one district that consists of hundreds of islands that face severe climate hazards called the Seribu Islands complex. This study explores the evidence of local climate trends, the potential impact, and its policy intervention on Seribu Islands, which are classified as small island states and widely recognized as being especially at risk from climate change, threatening their economic and social growth. Long-term in-situ climate data, satellite data, interviews with local stakeholders, and literature reviews were utilized to conduct an exploratory descriptive analysis. The result revealed that Seribu Island experienced a 2.2°C increase in minimum temperature from 1980 until 2021, 3.5-fold of the frequency of extreme temperature and precipitation, 4.17 mm/year of sea level rise, and 10.8 ha land expansion in the densest island. Moreover, about 67% of the inhabitant’s islands were occupied by built-up areas that cover more than 50% of the region. Further, under the worst-case SLR scenario, about 58.4% of the area will be affected, and about 29 islands will disappear. This evidence was also reinforced by every single local respondent’s viewpoint who felt that climate change is occurring in the region. Even though the region faces a severe threat of climate change, the issue of climate change adaptation has not been mainstreamed yet into their local policy. Therefore, the urgency of a real-time climate ground station, a real-time early warning system, and establishing a Regional Disaster Management Agency (BPBD) at the district level have yet to be addressed. Furthermore, the knowledge gained from such case studies is outlined, along with some scientific evidence that may assist small island states in better fostering the opportunities provided by climate change adaptation
    • …
    corecore