4 research outputs found

    Investigating Effects of Vertical Baffles on Damping of Shallow Water Sloshing using a 3D Model

    Get PDF
    Liquid sloshing is a common phenomenon in the transporting of liquid tanks. A safe liquid transporting needs to control the entered fluctuating forces to the tank walls, before leading these forces to large forces and momentums. Using predesigned baffles is a simple method for solving this problem. Smoothed Particle Hydrodynamics is a Lagrangian method that has been widely used to model such phenomena. In the present study, a three-dimensional incompressible SPH model has been developed for simulating the liquid sloshing phenomenon. This model has been improved using the kernel gradient correction tensors, particle shifting algorithms, turbulence model, and free surface particle detectors. The results of the three-dimensional numerical model are compared with an experimental model, showing a very good accuracy of the three-dimensional numerical method used. This study aims to investigate vertical baffle effects on the control and damping of liquid sloshing. The results of the present investigation show that in this particular case, by using baffles, it is possible to reduce more than 50% of the maximum value of pressure fluctuations in the slashing phenomenon

    Numerical three-dimensional analysis of the mechanism of flow and heat transfer in a vortex tube

    No full text
    A fully three-dimensional computational fluid dynamic model is used to analyze the mechanism of flow and heat transfer in a vortex tube. Vortex tube is a simple circular tube with interesting function and several industrial applications and contains one or more inlets and two outlets. It is used as a spot cooling device in industry. The past numerical investigations of vortex tube have been performed with the two-dimensional axisymmetric assumption but in the present work this problem is studied fully three-dimensional without making that assumption. Using this model, appropriate numerical results are presented to clarify physical understanding of the flow and energy separation inside the vortex tube. It is observed that there are considerable differences between the results of the two aforementioned models, and that the results of fully three-dimensional model are more accurate and agree better with available experimental data. Moreover, the parameters affecting the cooling efficiency of the vortex tube are discussed
    corecore