11 research outputs found

    Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror

    Full text link
    We experimentally demonstrate a simple and robust optical fibers based method to achieve simultaneously efficient excitation and fluorescence collection from Nitrogen-Vacancy (NV) defects containing micro-crystalline diamond. We fabricate a suitable micro-concave (MC) mirror that focuses scattered excitation laser light into the diamond located at the focal point of the mirror. At the same instance, the mirror also couples the fluorescence light exiting out of the diamond crystal in the opposite direction of the optical fiber back into the optical fiber within its light acceptance cone. This part of fluorescence would have been otherwise lost from reaching the detector. Our proof-of-principle demonstration achieves a 25 times improvement in fluorescence collection compared to the case of not using any mirrors. The increase in light collection favors getting high signal-to-noise ratio (SNR) optically detected magnetic resonance (ODMR) signals hence offers a practical advantage in fiber-based NV quantum sensors. Additionally, we compacted the NV sensor system by replacing some bulky optical elements in the optical path with a 1x2 fiber optical coupler in our optical system. This reduces the complexity of the system and provides portability and robustness needed for applications like magnetic endoscopy and remote-magnetic sensing.Comment: 6 pages, 8 figure

    Photoelectrochemical investigation on the cadmium sulfide (CdS) thin films prepared using spin coating technique

    Get PDF
    Photoelectrochemical cell technology is one of the simplest technologies, which converts light energy directly into electricity. The synthesis of cadmium sulfide (CdS) nanocrystals (NCs) was performed by the facile hot injection method. The NCs were characterized by different techniques such as XRD, Raman, UV-Vis, FESEM, and XPS. The XRD pattern confirms the phase pure hexagonal CdS NCs. The band gap of NCs calculated from the UV-Visible spectrum is at 2.40 eV, indicating good absorption in the visible spectrum. XPS analysis confirmed the presence of individual elements in CdS NCs. The CdS thin-films having different thicknesses were prepared on FTO substrates using the spin coating technique. Photoelectrochemical (PEC) investigation of CdS NCs thin-films photoelectrodes was performed by varying its thickness. The increase in the thickness of thin-films increased photocurrent density

    Solution-processed Cd-substituted CZTS nanocrystals for sensitized liquid junction solar cells

    Get PDF
    The Earth-abundant kesterite Cu2ZnSnS4 (CZTS) exhibits outstanding structural, optical, and electronic properties for a wide range of optoelectronic applications. However, the efficiency of CZTS thin-film solar cells is limited due to range of factors, including electronic disorder, secondary phases, and the presence of anti-site defects, which is key factor limiting the Voc. The complete substitution of Zn lattice sites in CZTS nanocrystals (NCs) with Cd atoms offers a promising approach to overcome several of these intrinsic limitations. Herein, we investigate the effects of substitution of Cd2+ into Zn2+ lattice sites in CZTS NCs through a facile solution-based method. The structural, morphological, optoelectronic, and power conversion efficiencies (PCEs) of the NCs synthesized have been systematically characterized using various experimental techniques, and the results are corroborated by first-principles density functional theory (DFT) calculations. The successful substitution of Zn by Cd is demonstrated to induce a structural transformation from the kesterite phase to the stannite phase, which results in the bandgap reducing from 1.51 eV (kesterite) to 1.1 eV (stannite), which is closer to the optimum bandgap value for outdoor photovoltaic applications. Furthermore, the PCE of the novel Cd-substituted liquid junction solar cell underwent a four-fold increase, reaching 1.1%. These results highlight the importance of substitutional doping strategies in optimizing existing CZTS-based materials to achieve improved device characteristics

    Fabrication of ZnO Scaffolded CdS Nanostructured Photoanodes with Enhanced Photoelectrochemical Water Splitting Activity under Visible Light

    Full text link
    CdS, characterized by its comparatively narrow energy band gap (∼2.4 eV), is an appropriate material for prospective use as a photoanode in photoelectrochemical water splitting. Regrettably, it encounters several obstacles for practical and large-scale applications, including issues such as bulk carrier recombination and diminished conductivity. Here, we have tried to address these challenges by fabricating a novel photoelectrode (ZnO/CdS) composed of one-dimensional ZnO nanorods (NRs) decorated with two-dimensional CdS nanosheets (NSs). A facile two-step chemical method comprising electrodeposition along with chemical bath deposition is employed to synthesize the ZnO NRs, CdS NSs, and ZnO/CdS nanostructures. The prepared nanostructures have been investigated by UV-visible absorption spectroscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy. The fabricated ZnO/CdS nanostructures have shown enhanced photoelectrochemical properties due to the improvement of the semiconductor junction surface area and thereby enhanced visible light absorption. The incorporation of CdS NSs has been further found to promote the rate of the charge separation and transfer process. Subsequently, the fabricated ZnO/CdS photoelectrodes achieved a photocurrent conversion efficiency 3 times higher than that of a planar ZnO NR photoanode and showed excellent performance under visible light irradiation. The highest applied bias photon-to-current conversion efficiency (% ABPE) of about ∼0.63% has been obtained for the sample with thicker CdS NSs on ZnO NRs with a photocurrent density of ∼1.87 mA/cm2 under AM 1.5 G illumination. The newly synthesized nanostructures further demonstrate that the full photovoltaic capacity of nanomaterials is yet to be exhausted

    Realization of electrochemically grown a-Fe2O3 thin films for photoelectrochemical water splitting application

    Full text link
    Hematite ferric oxide (a-Fe2O3) based photoanode has emerged as a potential candidate for water splitting application due to the high absorption coefficient in the visible region and favorable band alignment. In the present work, a-Fe2O3 thin film photoanodes were fabricated using a cost-effective and straightforward electrodeposition technique. The crystal structure, phase purity, elemental composition, and formation of a-Fe2O3 were confirmed by x-ray diffraction (XRD), photoluminescence (PL), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, energy-dispersive x-ray spectroscopy (EDS), and scanning electron microscopy (SEM). The bandgap calculated from the absorption spectrum from UV-visible analysis of a-Fe2O3 exhibits significant absorption in the visible region. The a-Fe2O3 photoanodes were further characterized for their photoelectrochemical (PEC) properties along with electrochemical impedance spectroscopy (EIS) analysis. Furthermore, XRD, SEM, and Fourier transform infrared (FTIR) spectroscopy investigations were performed after photoelectrochemical measurement to ensure the stability of photoanodes. Also, the prepared photoanode is highly stable against a large range of pH conditions, and no photobleaching was observed for up to 30 min. Furthermore, a significant enhancement in photocurrent conversion efficiency with optimum film thickness was observed upon light illumination. A maximum photon conversion efficiency of 1.44 % was obtained with a photocurrent density of 6.25 mA/cm2 for 1 V vs. SCE under simulated solar light

    Structural, optoelectronic, and photoelectrochemical investigation of CdSe NC's prepared by hot injection method

    Get PDF
    In this study, we report the synthesis and characterization of CdSe nanocrystals (NC's) by facile Hot injection (HI) method. The formation of CdSe NC's was confirmed by x-ray diffraction (XRD), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS). The optical properties were analyzed by UV-visible and photoluminescence (PL) spectroscopy shows an excitonic peak at 600 nm in UV-Vis spectra corresponds to the band gap of ~ 2 eV favorable for optoelectronic device applications. The Photoelectrochemical (PEC) performance of CdSe thin film prepared by spin coating demonstrates a rise of photocurrent density (Jsc = 0.081 µAcm-2) after illumination. The Mott-Schottky (MS) and electrochemical impedance spectroscopy (EIS) measurements were further carried out to understand intrinsic properties namely the type of conductivity, flat band potential, charge carrier density (ND), charge transfer resistance, and recombination lifetime. The n-type conductivity, the charge carrier density of ND = 1.292 x 1016 cm-2, and recombination lifetime of 32.4 µs suggest the ideal behavior of CdSe NC's for device quality photoelectrodes

    An interlinked computational-experimental investigation into SnS nano-flakes for field emission application

    Get PDF
    Layered binary semiconductor materials have attracted significant interest as field emitters due to their low work function, mechanical stability, high thermal and electrical conductivity. Herein, we report a systematic experimental and theoretical investigation of SnS nanoflakes synthesized using a simple, low-cost, and non-toxic hot injection method for field emission studies. The field emission studies were carried out on SnS nanoflakes thin film prepared using a simple spin coat technique. The x-ray diffraction (XRD) and Raman spectroscopy analysis revealed an orthorhombic phase of SnS. Scanning electron microscopy (SEM) analysis revealed that as-synthesized SnS has flakes-like morphology. The formation of pure-phase SnS nanoflakes was further confirmed by x-ray photoelectron spectroscopy (XPS) analysis. The UV-Visible-NIR spectroscopy analysis shows that SnS nanoflakes have a sharp absorption edge observed in the UV region and have a band gap of ∼ 1.66 eV. In addition, the first-principles density functional theory (DFT) calculations were carried out to provide atomic-level insights into the crystal structure, band structure, and density of states (DOS) of SnS nanoflakes. The field emission properties of SnS nanoflakes were also investigated and found that SnS nanoflakes have a low turn-on field (∼ 6.2 V/μm for 10 μA/cm2), high emission current density (∼ 104 μA/cm2 at 8.0 V/μm), superior current stability (∼ 2.5 hrs for ∼ 1 μA) and a high field enhancement factor of 1735. The first principle calculations the predicted lower work function of different surfaces, especially for the most stable SnS (001) surface ( = 4.32 eV), is believed to be responsible for the observed facile electron emission characteristics. We anticipate that the SnS could be utilized for future vacuum nano/microelectronic and flat panel display applications due to the low turn-on field and flakes-like structure

    Solution-processed Cd-substituted CZTS nanocrystals for sensitized liquid junction solar cells

    Get PDF
    The Earth-abundant kesterite Cu2ZnSnS4 (CZTS) exhibits outstanding structural, optical, and electronic properties for a wide range of optoelectronic applications. However, the efficiency of CZTS thin-film solar cells is limited due to a range of factors, including electronic disorder, secondary phases, and the presence of anti-site defects, which is a key factor limiting the Voc. The complete substitution of Zn lattice sites in CZTS nanocrystals (NCs) with Cd atoms offers a promising approach to overcome several of these intrinsic limitations. Herein, we investigate the effects of substituting Cd2+ into Zn2+ lattice sites in CZTS NCs through a facile solution-based method. The structural, morphological, optoelectronic, and power conversion efficiencies (PCEs) of the NCs synthesized have been systematically characterized using various experimental techniques, and the results are corroborated by first-principles density functional theory (DFT) calculations. The successful substitution of Zn by Cd is demonstrated to induce a structural transformation from the kesterite phase to the stannite phase, which results in the bandgap reduction from 1.51 eV (kesterite) to 1.1 eV (stannite), which is closer to the optimum bandgap value for outdoor photovoltaic applications. Furthermore, the PCE of the novel Cd-substituted liquid junction solar cell underwent a four-fold increase, reaching 1.1%. These results highlight the importance of substitutional doping strategies in optimizing existing CZTS-based materials to achieve improved device characteristics
    corecore