8 research outputs found

    In vitro antimicrobial, anticancer, and apoptosis-inducing effects of the methanolic extract of Launaea mucronata

    Get PDF
    Traditional medicine is widely used in the treatment and management of various ailments due to its low toxicity, low number of side effects and low cost. Many components of common fruits and vegetables play crucial roles as chemopreventive or chemotherapeutic agents. This study aimed to evaluate in vitro the antioxidant, cytotoxic and antimicrobial activities of Launaea mucronata’s methanolic stems and leaves extract. In this screening study, Launaea mucronata’s methanolic extracts showed remarkably antifungal activity against Candida albicans. The maximum zone of inhibition of the methanolic extract of Launaea mucronata leaves was detected against Proteus vulgaris with inhibition zones of 17.8 mm and 14.6 mm, respectively. 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay results showed high antioxidant activity for the extract almost comparable to that of ascorbic acid at 30 µg/ml, which indicates that it might potentially be developed into a successful antioxidant agent. Meanwhile, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was performed by screening the extract against HepG2 (Hepatocellular), A549 (Lung), HCT116 (Colon) and MCF7 (Breast) cancer cells and it was found that the extract exerted its highest activity against A549 cells with an IC50 value of 14.9 µg/ml. The extracts also shown lower cytotoxic activity against normal, healthy MRC-5 cells, with IC50 values of 204.83 g/ml for the stem extract and 412.4 g/ml for the leaves extract, respectively. This suggests that the extract is safe for normal, healthy cells, which is an important characteristic of any possible anticancer treatment. The antiproliferative and apoptosis activities of our selected plant showed that the extracts induced S-phase arrest and apoptosis in A549 cells. This high cytotoxic activity of the extract indicates that highly bioactive pure compounds could potentially be isolated from the extract in future studies and further developed into an anticancer agent specifically against lung cancer. Therefore, the current study has proven the potential of Launaea mucronata’s methanolic extract as a source of potent antioxidant and anticancer agent

    Anti-ulcer properties, cytokines, and apoptosis regulatory effects of Olea europaea leaves from Hail Province, Saudi Arabia

    Get PDF
    This study investigated the anti-ulcer properties of raw olive leaf powder (OLP) and its immunomodulatory potential through the cytokine network. The efficacy of OLP extract in treating stomach ulcers in rats in ethanol-induced models was examined using a single dosage (100, 200, 400 mg/kg) in groups 4, 5, and 6. The OLP demonstrated substantial anti-ulcer action even at 100 mg/kg. The activity was better at 400 mg/kg and almost equivalent to the conventional omeprazole treatment at 20 mg/kg in group 3. The cytokine network was studied in groups 1, 2, 3, and 6. The cytokine network was efficiently regulated by reducing the production of cytokines such as IL-1β, IL-2, IL-4, IL-6, IL-10, and TNF-α. The levels of caspase-3 and caspase-9 were also lowered in groups 3 and 4 considerably at p < 0.05. It is interesting to note that the expression of IFN was greater in animals treated with OLP in group 4, as compared to animals treated with omeprazole in group 3, as well as animals from the disease control group 2, when analyzed at a significance level of p < 0.05. The results revealed that OLP has intriguing potential for anti-ulcer action, and possesses immunomodulatory capabilities to control inflammatory cytokines and apoptotic markers

    Quality by Design for Optimizing a Novel Liposomal Jojoba Oil-Based Emulgel to Ameliorate the Anti-Inflammatory Effect of Brucine

    No full text
    One of the recent advancements in research is the application of natural products in developing newly effective formulations that have few drawbacks and that boost therapeutic effects. The goal of the current exploration is to investigate the effect of jojoba oil in augmenting the anti-inflammatory effect of Brucine natural alkaloid. This is first development of a formulation that applies Brucine and jojoba oil int a PEGylated liposomal emulgel proposed for topical application. Initially, various PEGylated Brucine liposomal formulations were fabricated using a thin-film hydration method. (22) Factorial design was assembled using two factors (egg Phosphatidylcholine and cholesterol concentrations) and three responses (particle size, encapsulation efficiency and in vitro release). The optimized formula was incorporated within jojoba oil emulgel. The PEGylated liposomal emulgel was inspected for its characteristics, in vitro, ex vivo and anti-inflammatory behaviors. Liposomal emulgel showed a pH of 6.63, a spreadability of 48.8 mm and a viscosity of 9310 cP. As much as 40.57% of Brucine was released after 6 h, and drug permeability exhibited a flux of 0.47 µg/cm2·h. Lastly, % of inflammation was lowered to 47.7, which was significant effect compared to other formulations. In conclusion, the anti-inflammatory influence of jojoba oil and Brucine was confirmed, supporting their integration into liposomal emulgel as a potential nanocarrier

    Formulation and Evaluation of Amikacin Sulfate Loaded Dextran Nanoparticles against Human Pathogenic Bacteria

    No full text
    Amikacin sulfate-loaded dextran sulfate sodium nanoparticles were formulated, lyophilized (LADNP), and then analyzed. The LADNP had a −20.9 ± 8.35 mV zeta potential, PDI of 0.256, and % PDI of 67.7. The zeta average nano size of LADNP was 317.9 z. d.nm, while the dimension of an individual particle was 259.3 ± 73.52 nm, and nanoparticle conductivity in colloidal solution was 2.36 mS/cm. LADNP has distinct endothermic peaks at temperatures at 165.77 °C, according to differential scanning calorimetry (DSC). The thermogravimetric analysis (TGA) showed the weight loss of LADNP, which was observed as 95% at 210.78 °C. XRD investigation on LADNP exhibited distinct peaks at 2θ as 9.6°, 10.4°, 11.4°, 18.9°, 20.3°, 24.4°, 28.2°, 33.2°, 38.9°, and 40.4° confirming crystalline structure. The amikacin release kinetics from LADNP revealed zero order kinetics with a linear release showed zero order kinetics with 37% of drug release in 7 h and had an R2 value of 0.99. The antibacterial effect of LADNP showed broad-spectrum activity against tested human pathogenic bacteria. The preset study demonstrated that LADNP is a promising antibacterial agent

    Oleuropein as a Potent Compound against Neurological Complications Linked with COVID-19: A Computational Biology Approach

    No full text
    The association of COVID-19 with neurological complications is a well-known fact, and researchers are endeavoring to investigate the mechanistic perspectives behind it. SARS-CoV-2 can bind to Toll-like receptor 4 (TLR-4) that would eventually lead to α-synuclein aggregation in neurons and stimulation of neurodegeneration pathways. Olive leaves have been reported as a promising phytotherapy or co-therapy against COVID-19, and oleuropein is one of the major active components of olive leaves. In the current study, oleuropein was investigated against SARS-CoV-2 target (main protease 3CLpro), TLR-4 and Prolyl Oligopeptidases (POP), to explore oleuropein potency against the neurological complications associated with COVID-19. Docking experiments, docking validation, interaction analysis, and molecular dynamic simulation analysis were performed to provide insight into the binding pattern of oleuropein with the three target proteins. Interaction analysis revealed strong bonding between oleuropein and the active site amino acid residues of the target proteins. Results were further compared with positive control lopinavir (3CLpro), resatorvid (TLR-4), and berberine (POP). Moreover, molecular dynamic simulation was performed using YASARA structure tool, and AMBER14 force field was applied to examine an 100 ns trajectory run. For each target protein-oleuropein complex, RMSD, RoG, and total potential energy were estimated, and 400 snapshots were obtained after each 250 ps. Docking analyses showed binding energy as −7.8, −8.3, and −8.5 kcal/mol for oleuropein-3CLpro, oleuropein-TLR4, and oleuropein-POP interactions, respectively. Importantly, target protein-oleuropein complexes were stable during the 100 ns simulation run. However, an experimental in vitro study of the binding of oleuropein to the purified targets would be necessary to confirm the present study outcomes

    Synthesis, Crystal Structure, Antibacterial and In Vitro Anticancer Activity of Novel Macroacyclic Schiff Bases and Their Cu (II) Complexes Derived from S-Methyl and S-Benzyl Dithiocarbazate

    Get PDF
    A series of novel macroacyclic Schiff base ligands and their Cu (II) complexes were synthesised via reacting dicarbonyls of varying chain lengths with S-methyl dithiocarbazate (SMDTC) and S-benzyl dithiocarbazate (SBDTC) followed by coordination with Cu (II) ions. X-ray crystal structures were obtained for compound 4, an SBDTC-diacetyl analogue, and Cu7, an SMDTC-hexanedione Cu (II) complex. Anticancer evaluation of the compounds showed that Cu1, an SMDTC-glyoxal complex, demonstrated the highest cytotoxic activity against MCF-7 and MDA-MB-231 breast cancer cells with IC50 values of 1.7 µM and 1.4 µM, respectively. There was no clear pattern observed between the effect of chain length and cytotoxic activity; however, SMDTC-derived analogues were more active than SBDTC-derived analogues against MDA-MB-231 cells. The antibacterial assay showed that K. rhizophila was the most susceptible bacteria to the compounds, followed by S. aureus. Compound 4 and the SMDTC-derived analogues 3, 5, Cu7 and Cu9 possessed the highest antibacterial activity. These active analogues were further assessed, whereby 3 possessed the highest antibacterial activity with an MIC of <24.4 µg/mL against K. rhizophila and S. aureus. Further antibacterial studies showed that at least compounds 4 and 5 were bactericidal. Thus, Cu1 and 3 were the most promising anticancer and antibacterial agents, respectively

    Spectral Analysis and Antiulcer Potential of <i>Lactuca sativa</i> through the Amelioration of Proinflammatory Cytokines and Apoptosis Markers

    No full text
    The objective of this study was to characterize the bioactive ingredients and antiulcer effects of Lactuca sativa leaves. Several bioactive chemicals were found in the cold methanolic extract of Lactuca sativa leaves after gas chromatography-mass spectrometry (GC-MS) research: 9,12-octadecadienoic acid (Z,Z)-, cyclononasiloxane, octadecamethyl-, n-hexadecanoic acid, Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl, octadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester, 9-octadecenamide, (Z)-, hexadecanoic acid, stigmasterol, benzothiazole, ethyl iso-allocholate, and octacosane. Distinct fingerprint regions in GCMS indicated the existence of bioactive compounds. The leaf powder of Lactuca sativa (LPL) demonstrated substantial antiulcer properties at 400 mg/kg, which was almost equivalent to the standard drug at 20 mg/kg. The cytokine network was efficiently regulated by reducing the production of proinflammatory cytokines such as IL-1β, IL-6, and TNF-α. The levels of caspase-3 and caspase-9 were also considerably lowered at p < 0.05 significant level
    corecore