11 research outputs found

    Behaviour of Steel Plate Shear Wall in Multi Span Moment Frame with Various Infill Plate Connection to Column

    Get PDF
    Steel plate shear walls consist of thin infill steel plates attached to beams, called (horizontal boundary elements, HBEs), and columns (vertical boundary elements, VBEs) in structural steel frames. The thin unstiffened web plates are expected to buckle in shear at low load levels and develop tension field action, providing ductility and energy dissipation through tension yielding of the web plate. HBEs are designed for stiffness and strength requirements and are expected to anchor the tension field formation in the web plates. VBEs are designed for yielding of web plates and plastic hinge formation at the ends of the HBEs. This design approach may result in very large demand on boundary frame members, especially VBEs in most cases. Several methods such as using LYP, perforating the infill plate and omitting connection of infill plate to columns have been proposed to reduce the moment and axial force demands on the VBEs. The main purpose of this research is to study the behavior of steel plate shear walls with various connection of infill plate to columns in multi span moment frames. A numerical study has been performed in order to investigate the behavior of such a system. The results of proposed system were compared with those of the conventional SPSWs. Results show that reducing the infill plate connection to columns will reduce the axial forces in columns

    Experimental and Numerical Research on Steel Plate Shear Wall with Infill Plate Connected to Beam Only

    Get PDF
    Steel plate shear walls consist of thin infill steel plates attached to beams, called (horizontal boundary elements, HBEs), and columns (vertical boundary elements, VBEs) in structural steel frames. The thin unstiffened web plates are expected to buckle in shear at low load levels and develop tension field action, providing ductility and energy dissipation through tension yielding of the web plate. HBEs are designed for stiffness and strength requirements and are expected to anchor the tension field formation in the web plates. VBEs are designed for yielding of web plates and plastic hinge formation at the ends of the HBEs. This design approach may result in very large demand on boundary frame members, especially VBEs in most cases. Several methods such as using LYP, perforating the infill plate and omitting connection of infill plate to columns have been proposed to reduce the moment and axial force demands on the VBEs. Study the behavior of steel plate shear walls omitting the connection of infill plate and columns is the main purpose of this research. A classic analysis base on PFI method along with quasi static cyclic experimental study has been performed in order to investigate the behavior of such a system. The results of the experimental study are used to verify numerical models. Behaviors of proposed system (overall capacity and initial stiffness) were compared with those of the conventional SPSWs. Results show that both parameters are reduced in comparison to the conventional SPSWs

    Theoretical and Experimental Studies of Two-Span Reinforced Concrete Deep Beams and Comparisons with Strut-and-Tie Method

    No full text
    Regarding the complicated behavior of continuous deep beams, a research program including three parts was conducted. First part: three continuous concrete deep beams with different shear span-to-depth ratios (a/h) were tested. The effects of varying a/h ratio on ultimate strength and failure modes were investigated. Second part: the nonlinear finite element (FE) analyses were performed to simulate the experimental specimens and 21 large-scale continuous deep beams. The main parameters investigated were a/h ratio from 0.33 to 2 and fc′ considered 40 MPa, 60 MPa, and 80 MPa. Third part: the strut-and-tie modeling of different design codes and indeterminate strut-tie method were studied for continuous deep beams. Regardless of the a/h ratio, all beam specimens failed in shear mode with main diagonal cracks. Although EC2 load prediction was conservative for all beam models, the ACI and CSA predictions for concrete deep beams with high compressive strength were unsafe. The indeterminate truss model showed closer results to FE analysis in comparison with ACI, EC2, and CSA strut-and-tie method

    Experimental and Numerical Research on Steel Plate Shear Wall with Infill Plate Connected to Beam Only

    Get PDF
    Steel plate shear walls consist of thin infill steel plates attached to beams, called (horizontal boundary elements, HBEs), and columns (vertical boundary elements, VBEs) in structural steel frames. The thin unstiffened web plates are expected to buckle in shear at low load levels and develop tension field action, providing ductility and energy dissipation through tension yielding of the web plate. HBEs are designed for stiffness and strength requirements and are expected to anchor the tension field formation in the web plates. VBEs are designed for yielding of web plates and plastic hinge formation at the ends of the HBEs. This design approach may result in very large demand on boundary frame members, especially VBEs in most cases. Several methods such as using LYP, perforating the infill plate and omitting connection of infill plate to columns have been proposed to reduce the moment and axial force demands on the VBEs. Study the behavior of steel plate shear walls omitting the connection of infill plate and columns is the main purpose of this research. A classic analysis base on PFI method along with quasi static cyclic experimental study has been performed in order to investigate the behavior of such a system. The results of the experimental study are used to verify numerical models. Behaviors of proposed system (overall capacity and initial stiffness) were compared with those of the conventional SPSWs. Results show that both parameters are reduced in comparison to the conventional SPSWs

    Investigation of constitutive properties of high plasticity clay soils mixed with crushed rubber tire waste

    No full text
    Addressing the enormous waste resulting from discarded worn rubber tires is an environmental challenge. Recycling and using crushed rubber tire waste (CRTW) in construction materials can help in addressing this challenge. This study investigates the effect of addition of CRTW on the engineering properties of high plasticity clay soils (HPCS). There is a paucity of research in the application of CRTW in HPCS. This research tries to fill this research gap. Specifically, this study seeks to investigate the effect of mixing CRTW on the constitutive properties of HPCS. After identifying a locally available HPCS, mixtures of the clay and several percentages (0%, 6%, 12%, 18%, and 24%) by weight of CRTW were prepared. A range of CRTW shapes and sizes were investigated. Three different particle shapes of CRTW (granular rubber, rubber chips, and rubber fiber), and two particle sizes (fine and coarse) were studied. The parameters studied included unconfined compressive strength (UCS), strain at failure, post-peak strength loss (PPSL), modulus of elasticity, failure modes/mechanisms, repeatability of tests results, and examination of CRTW particles and mixtures via binocular and SEM microscope. Our findings unveiled that the highest level of repeatability was observed in granular CRTW, with a maximum variability of only 5%. Moreover, the mixtures containing granular CRTW exhibited, on average, 10% and 15% higher strength and modulus of elasticity, respectively, in comparison to mixtures incorporating other shapes of CRTW. In general, the HPCS-CRTW mixtures displayed higher shear strains, averaging 25% greater than pure HPCS. Furthermore, the addition of CRTW to HPCS resulted in a reduction of its PPSL and a transition in behavior from brittle to slightly ductile. Examination of failed specimens revealed the existence of two primary failure modes: shear plane failure and shear plane failure accompanied by multiple vertical cracks within the mixtures. These results suggest that the utilization of granular CRTW in HPCS can improve certain properties of HPCS. However, it is advisable to limit the rubber content in this mixture to 6% to mitigate significant adverse effects on its strength

    Investigating Tensile Behavior of Sustainable Basalt–Carbon, Basalt–Steel, and Basalt–Steel-Wire Hybrid Composite Bars

    No full text
    One of the main disadvantages of steel bars is rebar corrosion, especially when they are exposed to aggressive environmental conditions such as marine environments. One of the suggested ways to solve this problem is to use composite bars. However, the use of these bars is ambiguous due to some weaknesses, such as low modulus of elasticity and linear behavior in the tensile tests. In this research, the effect of the hybridization process on mechanical behavior, including tensile strength, elastic modulus, and energy absorbed of composite bars, was evaluated. In addition, using basalt fibers because of their appropriate mechanical behavior, such as elastic modulus, tensile strength, durability, and high-temperature resistance, compared to glass fibers, as the main fibers in all types of composite hybrid bars, was investigated. A total of 12 hybrid composite bars were made in four different groups. Basalt and carbon T300 composite fibers, steel bars with a diameter of 6 mm, and steel wires with a diameter of 1.5 mm were used to fabricate hybrid composite bars, and vinyl ester 901 was used as the resin. The results show that, depending on composite fibers used for fabrication of hybrid composite bars, the modulus of elasticity and the tensile strength increased compared to glass-fiber-reinforced-polymer (GFRP) bars by 83% to 120% and 6% to 26%, respectively. Moreover, hybrid composite bars with basalt and steel wires witnessed higher absorbed energy compared to other types of hybrid composite bars
    corecore