449 research outputs found

    Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer’s Disease in the 3xTg-AD mouse model

    Get PDF
    Alzheimer's disease (AD) is the most common cause of dementia in the elderly. In the pathogenesis of AD a pivotal role is played by two neurotoxic proteins that aggregate and accumulate in the central nervous system: amyloid beta and hyper-phosphorylated tau. Accumulation of extracellular amyloid beta plaques and intracellular hyper-phosphorylated tau tangles, and consequent neuronal loss begins 10-15 years before any cognitive impairment. In addition to cognitive and behavioral deficits, sensorial abnormalities have been described in AD patients and in some AD transgenic mouse models. Retina can be considered a simple model of the brain, as some pathological changes and therapeutic strategies from the brain may be observed or applicable to the retina. Here we propose new retinal biomarkers that could anticipate the AD diagnosis and help the beginning and the follow-up of possible future treatments. We analyzed retinal tissue of triple-transgenic AD mouse model (3xTg-AD) for the presence of pathological hallmarks during disease progression. We found the presence of amyloid beta plaques, tau tangles, neurodegeneration, and astrogliosis in the retinal ganglion cell layer of 3xTg-AD mice, already at pre-symptomatic stage. Moreover, retinal microglia in pre-symptomatic mice showed a ramified, anti-inflammatory phenotype which, during disease progression, switches to a pro-inflammatory, less ramified one, becoming neurotoxic. We hypothesize retina as a window through which monitor AD-related neurodegeneration process

    Severe acute respiratory syndrome coronavirus 2, primary varicella zoster virus coinfection, and a polymicrobial ventilator-associated tracheobronchitis in an adult immunocompetent male: a case report

    Get PDF
    BACKGROUND: The spectrum of clinical manifestations and differential diagnosis associated with coronavirus disease 2019 is broad, ranging from fever and cutaneous eruptions to respiratory distress or even neurological disorders. Coexisting multipathogen infections significantly increase the complexity of the proper diagnostic and therapeutic approach and correlate with the rate of intensive care unit admissions and in-hospital mortality. CASE PRESENTATION: We present a case of multipathogen respiratory infection with severe acute respiratory syndrome coronavirus 2, varicella zoster virus, and polymicrobial tracheobronchitis in a 48-year-old Caucasian male hospitalized after traumatic brain injury. The patient tested positive for severe acute respiratory syndrome coronavirus 2 infection upon admission. During his stay in the intensive care unit, the patient developed a vesicular exanthema along with respiratory failure and signs of septic shock. CONCLUSION: This case of an adult presenting with severe acute respiratory syndrome coronavirus 2 infection and simultaneous primary varicella zoster virus infection illustrates the importance of considering coinfections in patients with coronavirus disease 2019 with unusual clinical manifestations

    KCa3.1 inhibition switches the phenotype of glioma-infiltrating microglia/macrophages

    Get PDF
    Among the strategies adopted by glioma to successfully invade the brain parenchyma is turning the infiltrating microglia/macrophages (M/MΦ) into allies, by shifting them toward an anti-inflammatory, pro-tumor phenotype. Both glioma and infiltrating M/MΦ cells express the Ca(2+)-activated K(+) channel (KCa3.1), and the inhibition of KCa3.1 activity on glioma cells reduces tumor infiltration in the healthy brain parenchyma. We wondered whether KCa3.1 inhibition could prevent the acquisition of a pro-tumor phenotype by M/MΦ cells, thus contributing to reduce glioma development. With this aim, we studied microglia cultured in glioma-conditioned medium or treated with IL-4, as well as M/MΦ cells acutely isolated from glioma-bearing mice and from human glioma biopsies. Under these different conditions, M/MΦ were always polarized toward an anti-inflammatory state, and preventing KCa3.1 activation by 1-[(2-Chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), we observed a switch toward a pro-inflammatory, antitumor phenotype. We identified FAK and PI3K/AKT as the molecular mechanisms involved in this phenotype switch, activated in sequence after KCa3.1. Anti-inflammatory M/MΦ have higher expression levels of KCa3.1 mRNA (kcnn4) that are reduced by KCa3.1 inhibition. In line with these findings, TRAM-34 treatment, in vivo, significantly reduced the size of tumors in glioma-bearing mice. Our data indicate that KCa3.1 channels are involved in the inhibitory effects exerted by the glioma microenvironment on infiltrating M/MΦ, suggesting a possible role as therapeutic targets in glioma

    Neuroinflammatory processes, A1 astrocyte activation and protein aggregation in the retina of Alzheimer’s disease patients, possible biomarkers for early diagnosis

    Get PDF
    Alzheimer's disease (AD), a primary cause of dementia in the aging population, is characterized by extracellular amyloid-beta peptides aggregation, intracellular deposits of hyperphosphorylated tau, neurodegeneration and glial activation in the brain. It is commonly thought that the lack of early diagnostic criteria is among the main causes of pharmacological therapy and clinical trials failure; therefore, the actual challenge is to define new biomarkers and non-invasive technologies to measure neuropathological changes in vivo at pre-symptomatic stages. Recent evidences obtained from human samples and mouse models indicate the possibility to detect protein aggregates and other pathological features in the retina, paving the road for non-invasive rapid detection of AD biomarkers. Here, we report the presence of amyloid beta plaques, tau tangles, neurodegeneration and detrimental astrocyte and microglia activation according to a disease associated microglia phenotype (DAM). Thus, we propose the human retina as a useful site for the detection of cellular and molecular changes associated with Alzheimer's disease

    Thalamic inputs to dorsomedial striatum are involved in inhibitory control: evidence from the five-choice serial reaction time task in rats

    Get PDF
    Rationale Corticostriatal circuits are widely implicated in the top-down control of attention including inhibitory control and behavioural flexibility. However, recent neurophysiological evidence also suggests a role for thalamic inputs to striatum in behaviours related to salient, reward-paired cues. Objectives Here, we used designer receptors exclusively activated by designer drugs (DREADDs) to investigate the role of parafascicular (Pf) thalamic inputs to the dorsomedial striatum (DMS) using the five-choice serial reaction time task (5CSRTT) in rats. Methods The 5CSRTT requires sustained attention in order to detect spatially and temporally distributed visual cues and provides measures of inhibitory control related to impulsivity (premature responses) and compulsivity (perseverative responses). Rats underwent bilateral Pf injections of the DREADD vector, AAV2-CaMKIIa-HA-hM4D(Gi)-IRES-mCitrine. The DREADD agonist, clozapine N-oxide (CNO; 1 μl bilateral; 3 μM) or vehicle, was injected into DMS 1 h before behavioural testing. Task parameters were manipulated to increase attention load or reduce stimulus predictability respectively. Results We found that inhibition of the Pf-DMS projection significantly increased perseverative responses when stimulus predictability was reduced but had no effect on premature responses or response accuracy, even under increased attentional load. Control experiments showed no effects on locomotor activity in an open field. Conclusions These results complement previous lesion work in which the DMS and orbitofrontal cortex were similarly implicated in perseverative responses and suggest a specific role for thalamostriatal inputs in inhibitory control

    Dissociable effects of 5-HT2C receptor antagonism and genetic inactivation on perseverance and learned non-reward in an egocentric spatial reversal task

    Get PDF
    Cognitive flexibility can be assessed in reversal learning tests, which are sensitive to modulation of 5-HT2C receptor (5-HT2CR) function. Successful performance in these tests depends on at least two dissociable cognitive mechanisms which may separately dissipate associations of previous positive and negative valence. The first is opposed by perseverance and the second by learned non-reward. The current experiments explored the effect of reducing function of the 5-HT2CR on the cognitive mechanisms underlying egocentric reversal learning in the mouse. Experiment 1 used the 5-HT2CR antagonist SB242084 (0.5 mg/kg) in a between-groups serial design and Experiment 2 used 5-HT2CR KO mice in a repeated measures design. Animals initially learned to discriminate between two egocentric turning directions, only one of which was food rewarded (denoted CS+, CS−), in a T- or Y-maze configuration. This was followed by three conditions; (1) Full reversal, where contingencies reversed; (2) Perseverance, where the previous CS+ became CS− and the previous CS− was replaced by a novel CS+; (3) Learned non-reward, where the previous CS− became CS+ and the previous CS+ was replaced by a novel CS-. SB242084 reduced perseverance, observed as a decrease in trials and incorrect responses to criterion, but increased learned non-reward, observed as an increase in trials to criterion. In contrast, 5-HT2CR KO mice showed increased perseverance. 5-HT2CR KO mice also showed retarded egocentric discrimination learning. Neither manipulation of 5-HT2CR function affected performance in the full reversal test. These results are unlikely to be accounted for by increased novelty attraction, as SB242084 failed to affect performance in an unrewarded novelty task. In conclusion, acute 5-HT2CR antagonism and constitutive loss of the 5-HT2CR have opposing effects on perseverance in egocentric reversal learning in mice. It is likely that this difference reflects the broader impact of 5HT2CR loss on the development and maintenance of cognitive function

    Non-myogenic mesenchymal cells contribute to muscle degeneration in facioscapulohumeral muscular dystrophy patients

    Get PDF
    Muscle-resident non-myogenic mesenchymal cells play key roles that drive successful tissue regeneration within the skeletal muscle stem cell niche. These cells have recently emerged as remarkable therapeutic targets for neuromuscular disorders, although to date they have been poorly investigated in facioscapulohumeral muscular dystrophy (FSHD). In this study, we characterised the non-myogenic mesenchymal stromal cell population in FSHD patients’ muscles with signs of disease activity, identified by muscle magnetic resonance imaging (MRI), and compared them with those obtained from apparently normal muscles of FSHD patients and from muscles of healthy, age-matched controls. Our results showed that patient-derived cells displayed a distinctive expression pattern of mesenchymal markers, along with an impaired capacity to differentiate towards mature adipocytes in vitro, compared with control cells. We also demonstrated a significant expansion of non-myogenic mesenchymal cells (identified as CD201- or PDGFRA-expressing cells) in FSHD muscles with signs of disease activity, which correlated with the extent of intramuscular fibrosis. In addition, the accumulation of non-myogenic mesenchymal cells was higher in FSHD muscles that deteriorate more rapidly. Our results prompt a direct association between an accumulation, as well as an altered differentiation, of non-myogenic mesenchymal cells with muscle degeneration in FSHD patients. Elucidating the mechanisms and cellular interactions that are altered in the affected muscles of FSHD patients could be instrumental to clarify disease pathogenesis and identifying reliable novel therapeutic targets
    corecore