456 research outputs found

    The Gravitational and Electrostatic Fields Far from an Isolated Einstein-Maxwell Source

    Full text link
    The exterior solution for an arbitrary charged, massive source, is studied as a static deviation from the Reissner-Nordstr\o m metric. This is reduced to two coupled ordinary differential equations for the gravitational and electrostatic potential functions. The homogeneous equations are explicitly solved in the particular case q2=m2q^2=m^2, obtaining a multipole expansion with radial hypergeometric dependence for both potentials. In the limiting case of a neutral source, the equations are shown to coincide with recent results by Bondi and Rindler.Comment: 11 pages, revTe

    Relativistic gravitational collapse in comoving coordinates: The post-quasistatic approximation

    Full text link
    A general iterative method proposed some years ago for the description of relativistic collapse, is presented here in comoving coordinates. For doing that we redefine the basic concepts required for the implementation of the method for comoving coordinates. In particular the definition of the post-quasistatic approximation in comoving coordinates is given. We write the field equations, the boundary conditions and a set of ordinary differential equations (the surface equations) which play a fundamental role in the algorithm. As an illustration of the method, we show how to build up a model inspired in the well known Schwarzschild interior solution. Both, the adiabatic and non adiabatic, cases are considered.Comment: 14 pages, 11 figures; updated version to appear in Int. J. Modern Phys.

    Curvature singularity of the distributional BTZ black hole geometry

    Full text link
    For the non-rotating BTZ black hole, the distributional curvature tensor field is found. It is shown to have singular parts proportional to a ÎŽ\delta-distribution with support at the origin. This singularity is related, through Einstein field equations, to a point source. Coordinate invariance and independence on the choice of differentiable structure of the results are addressed.Comment: Latex, 7 page

    Two-loop critical mass for Wilson fermions

    Get PDF
    We have redone a recent two-loop computation of the critical mass for Wilson fermions in lattice QCD by evaluating Feynman integrals with the coordinate-space method. We present the results for different types of infrared regularization. We confirm both the previous numerical estimates and the power of the coordinate-space method whenever high accuracy is needed.Comment: 13 LaTeX2e pages, 2 ps figures include

    Compact anisotropic spheres with prescribed energy density

    Full text link
    New exact interior solutions to the Einstein field equations for anisotropic spheres are found. We utilise a procedure that necessitates a choice for the energy density and the radial pressure. This class contains the constant density model of Maharaj and Maartens (Gen. Rel. Grav., Vol 21, 899-905, 1989) and the variable density model of Gokhroo and Mehra (Gen. Rel. Grav., Vol 26, 75-84, 1994) as special cases. These anisotropic spheres match smoothly to the Schwarzschild exterior and gravitational potentials are well behaved in the interior. A graphical analysis of the matter variables is performed which points to a physically reasonable matter distribution.Comment: 22 pages, 3 figures, to appear in Gen. Rel. Gra
    • 

    corecore