18 research outputs found

    Distinct and Shared Roles of β-Arrestin-1 and β-Arrestin-2 on the Regulation of C3a Receptor Signaling in Human Mast Cells

    Get PDF
    BACKGROUND: The complement component C3a induces degranulation in human mast cells via the activation of cell surface G protein coupled receptors (GPCR; C3aR). For most GPCRs, agonist-induced receptor phosphorylation leads to the recruitment of β-arrestin-1/β-arrestin-2; resulting in receptor desensitization and internalization. Activation of GPCRs also leads to ERK1/2 phosphorylation via two temporally distinct pathways; an early response that reflects G protein activation and a delayed response that is G protein independent but requires β-arrestins. The role of β-arrestins on C3aR activation/regulation in human mast cells, however, remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: We utilized lentivirus short hairpin (sh)RNA to stably knockdown the expression of β-arrestin-1 and β-arrrestin-2 in human mast cell lines, HMC-1 and LAD2 that endogenously expresses C3aR. Silencing β-arrestin-2 attenuated C3aR desensitization, blocked agonist-induced receptor internalization and rendered the cells responsive to C3a for enhanced NF-κB activity as well as chemokine generation. By contrast, silencing β-arrestin-1 had no effect on these responses but resulted in a significant decrease in C3a-induced mast cell degranulation. In shRNA control cells, C3a caused a transient ERK1/2 phosphorylation, which peaked at 5 min but disappeared by 10 min. Knockdown of β-arrestin-1, β-arrestin-2 or both enhanced the early response to C3a and rendered the cells responsive for ERK1/2 phosphorylation at later time points (10-30 min). Treatment of cells with pertussis toxin almost completely blocked both early and delayed C3a-induced ERK1/2 phosphorylation in β-arrestin1/2 knockdown cells. CONCLUSION/SIGNIFICANCE: This study demonstrates distinct roles for β-arrestins-1 and β-arrestins-2 on C3aR desensitization, internalization, degranulation, NF-κB activation and chemokine generation in human mast cells. It also shows that both β-arrestin-1 and β-arrestin-2 play a novel and shared role in inhibiting G protein-dependent ERK1/2 phosphorylation. These findings reveal a new level of complexity for C3aR regulation by β-arrestins in human mast cells

    Vitamin D in health and disease: Current perspectives

    Get PDF
    Despite the numerous reports of the association of vitamin D with a spectrum of development, disease treatment and health maintenance, vitamin D deficiency is common. Originating in part from the diet but with a key source resulting from transformation by exposure to sunshine, a great deal of the population suffers from vitamin D deficiency especially during winter months. It is linked to the treatment and pathogenesis and/or progression of several disorders including cancer, hypertension, multiple sclerosis, rheumatoid arthritis, osteoporosis, muscle weakness and diabetes. This widespread deficiency of Vitamin D merits consideration of widespread policies including increasing awareness among the public and healthcare professionals

    Highly efficient sorghum transformation

    Get PDF
    A highly efficient microprojectile transformation system for sorghum (Sorghum bicolor L.) has been developed by using immature embryos (IEs) of inbred line Tx430. Co-bombardment was performed with the neomycin phosphotransferase II (nptII) gene and the green fluorescent protein (gfp) gene, both under the control of the maize ubiquitin1 (ubi1) promoter. After optimization of both tissue culture media and parameters of microprojectile transformation, 25 independent transgenic events were obtained from 121 bombarded IEs. The average transformation frequency (the total number of independent transgenic events divided by the total number of bombarded IEs) was 20.7% in three independent experiments. Transgenic events were confirmed by both PCR screening and Southern hybridization of genomic DNA from primary transgenics (T ). More than 90% of transformants were fertile and displayed normal morphology in a containment glasshouse. Co-transformation rate of the nptII and gfp genes was 72% in these experiments. The segregation of nptII and gfp in T progenies was observed utilizing fluorescence microscopy and geneticin selection of seedlings indicating both were inherited in the T generation. The transformation procedure, from initiating IEs to planting putative transgenic plantlets in the glasshouse, was completed within 11-16 weeks, and was approximately threefold more efficient than the previously reported best sorghum transformation system
    corecore