53 research outputs found

    Monodromy of Cyclic Coverings of the Projective Line

    Full text link
    We show that the image of the pure braid group under the monodromy action on the homology of a cyclic covering of degree d of the projective line is an arithmetic group provided the number of branch points is sufficiently large compared to the degree.Comment: 47 pages (to appear in Inventiones Mathematicae

    Arithmeticity vs. non-linearity for irreducible lattices

    Full text link
    We establish an arithmeticity vs. non-linearity alternative for irreducible lattices in suitable product groups, such as for instance products of topologically simple groups. This applies notably to a (large class of) Kac-Moody groups. The alternative relies on a CAT(0) superrigidity theorem, as we follow Margulis' reduction of arithmeticity to superrigidity.Comment: 11 page

    The Asymptotic distribution of circles in the orbits of Kleinian groups

    Full text link
    Let P be a locally finite circle packing in the plane invariant under a non-elementary Kleinian group Gamma and with finitely many Gamma-orbits. When Gamma is geometrically finite, we construct an explicit Borel measure on the plane which describes the asymptotic distribution of small circles in P, assuming that either the critical exponent of Gamma is strictly bigger than 1 or P does not contain an infinite bouquet of tangent circles glued at a parabolic fixed point of Gamma. Our construction also works for P invariant under a geometrically infinite group Gamma, provided Gamma admits a finite Bowen-Margulis-Sullivan measure and the Gamma-skinning size of P is finite. Some concrete circle packings to which our result applies include Apollonian circle packings, Sierpinski curves, Schottky dances, etc.Comment: 31 pages, 8 figures. Final version. To appear in Inventiones Mat

    Lyapunov exponents for products of complex Gaussian random matrices

    Full text link
    The exact value of the Lyapunov exponents for the random matrix product PN=ANAN1...A1P_N = A_N A_{N-1}...A_1 with each Ai=Σ1/2GicA_i = \Sigma^{1/2} G_i^{\rm c}, where Σ\Sigma is a fixed d×dd \times d positive definite matrix and GicG_i^{\rm c} a d×dd \times d complex Gaussian matrix with entries standard complex normals, are calculated. Also obtained is an exact expression for the sum of the Lyapunov exponents in both the complex and real cases, and the Lyapunov exponents for diffusing complex matrices.Comment: 15 page

    Multidimensional continued fractions, dynamical renormalization and KAM theory

    Full text link
    The disadvantage of `traditional' multidimensional continued fraction algorithms is that it is not known whether they provide simultaneous rational approximations for generic vectors. Following ideas of Dani, Lagarias and Kleinbock-Margulis we describe a simple algorithm based on the dynamics of flows on the homogeneous space SL(2,Z)\SL(2,R) (the space of lattices of covolume one) that indeed yields best possible approximations to any irrational vector. The algorithm is ideally suited for a number of dynamical applications that involve small divisor problems. We explicitely construct renormalization schemes for (a) the linearization of vector fields on tori of arbitrary dimension and (b) the construction of invariant tori for Hamiltonian systems.Comment: 51 page
    corecore