73 research outputs found
Decolorization of synthetic melanoidins-containing wastewater by a bacterial consortium
The presence of melanoidins in molasses wastewater leads to water pollution both due to its dark brown color and its COD contents. In this study, a bacterial consortium isolated from waterfall sediment was tested for its decolorization. The identification of culturable bacteria by 16S rDNA based approach showed that the consortium composed of Klebsiella oxytoca, Serratia mercescens, Citrobacter sp. and unknown bacterium. In the context of academic study, prevention on the difficulties of providing effluent as well as its variations in compositions, several synthetic media prepared with respect to color and COD contents based on analysis of molasses wastewater, i.e., Viandox sauce (13.5% v/v), caramel (30% w/v), beet molasses wastewater (41.5% v/v) and sugarcane molasses wastewater (20% v/v) were used for decolorization using consortium with color removal 9.5, 1.13, 8.02 and 17.5%, respectively, within 2 days. However, Viandox sauce was retained for further study. The effect of initial pH and Viandox concentration on decolorization and growth of bacterial consortium were further determined. The highest decolorization of 18.3% was achieved at pH 4 after 2 day of incubation. Experiments on fresh or used medium and used or fresh bacterial cells, led to conclusion that the limitation of decolorization was due to nutritional deficiency. The effect of aeration on decolorization was also carried out in 2 L laboratory-scale suspended cell bioreactor. The maximum decolorization was 19.3% with aeration at KLa = 2.5836 h-1 (0.1 vvm)
European propolis is highly active against trypanosomatids including Crithidia fasciculata.
Extracts of 35 samples of European propolis were tested against wild type and resistant strains of the protozoal pathogens Trypanosoma brucei, Trypanosoma congolense and Leishmania mexicana. The extracts were also tested against Crithidia fasciculata a close relative of Crithidia mellificae, a parasite of bees. Crithidia, Trypanosoma and Leishmania are all members of the order Kinetoplastida. High levels of activity were obtained for all the samples with the levels of activity varying across the sample set. The highest levels of activity were found against L. mexicana. The propolis samples were profiled by using liquid chromatography with high resolution mass spectrometry (LC-MS) and principal components analysis (PCA) of the data obtained indicated there was a wide variation in the composition of the propolis samples. Orthogonal partial least squares (OPLS) associated a butyrate ester of pinobanksin with high activity against T. brucei whereas in the case of T. congolense high activity was associated with methyl ethers of chrysin and pinobanksin. In the case of C. fasciculata highest activity was associated with methyl ethers of galangin and pinobanksin. OPLS modelling of the activities against L. mexicana using the mass spectrometry produced a less successful model suggesting a wider range of active components
Quantitative PCR reveals strong spatial and temporal variation of the wasting disease pathogen, Labyrinthula zosterae in northern European eelgrass (Zostera marina) beds
Seagrass beds are the foundation species of functionally important coastal ecosystems worldwide. The worldâs largest losses of the widespread seagrass Zostera marina (eelgrass) have been reported as a consequence of wasting disease, an infection with the endophytic protist Labyrinthula zosterae. During one of the most extended epidemics in the marine realm, ~90% of East and Western Atlantic eelgrass beds died-off between 1932 and 1934. Today, small outbreaks continue to be reported, but the current extent of L. zosterae in European meadows is completely unknown. In this study we quantify the abundance and prevalence of the wasting disease pathogen among 19 Z. marina populations in northern European coastal waters, using quantitative PCR (QPCR) with primers targeting a species specific portion of the internally transcribed spacer (ITS1) of L. zosterae. Spatially, we found marked variation among sites with abundances varying between 0 and 126 cells mgâ1 Z. marina dry weight (mean: 5.7 L. zosterae cells mgâ1 Z. marina dry weight ±1.9 SE) and prevalences ranged from 0â88.9%. Temporarily, abundances varied between 0 and 271 cells mgâ1 Z. marina dry weight (mean: 8.5±2.6 SE), while prevalences ranged from zero in winter and early spring to 96% in summer. Field concentrations accessed via bulk DNA extraction and subsequent QPCR correlated well with prevalence data estimated via isolation and cultivation from live plant tissue. L. zosterae was not only detectable in black lesions, a sign of Labyrinthula-induced necrosis, but also occurred in green, apparently healthy tissue. We conclude that L. zosterae infection is common (84% infected populations) in (northern) European eelgrass populations with highest abundances during the summer months. In the light of global climate change and increasing rate of marine diseases our data provide a baseline for further studies on the causes of pathogenic outbreaks of L. zosterae
Widespread Occurrence of Secondary Lipid Biosynthesis Potential in Microbial Lineages
Bacterial production of long-chain omega-3 polyunsaturated fatty acids (PUFAs),
such as eicosapentaenoic acid (EPA, 20:5n-3) and
docosahexaenoic acid (DHA, 22:6n-3), is constrained to a narrow
subset of marine Îł-proteobacteria. The genes responsible for de
novo bacterial PUFA biosynthesis, designated
pfaEABCD, encode large, multi-domain protein complexes akin
to type I iterative fatty acid and polyketide synthases, herein referred to as
âPfa synthasesâ. In addition to the archetypal Pfa synthase gene
products from marine bacteria, we have identified homologous type I FAS/PKS gene
clusters in diverse microbial lineages spanning 45 genera representing 10 phyla,
presumed to be involved in long-chain fatty acid biosynthesis. In total, 20
distinct types of gene clusters were identified. Collectively, we propose the
designation of âsecondary lipidsâ to describe these
biosynthetic pathways and products, a proposition consistent with the
âsecondary metaboliteâ vernacular. Phylogenomic analysis reveals a
high degree of functional conservation within distinct biosynthetic pathways.
Incongruence between secondary lipid synthase functional clades and taxonomic
group membership combined with the lack of orthologous gene clusters in closely
related strains suggests horizontal gene transfer has contributed to the
dissemination of specialized lipid biosynthetic activities across disparate
microbial lineages
Precipitation of iron in windowpane oyster shells by marine shellâboring cyanobacteria
Shells of windowpane oyster [Placuna placenta (L)] in the intertidal zone of the Zuari estuary, Goa, were often found to be black in color. Microscopical observation of partially decalcified shells showed the presence of cyanobacterial filaments encrusted with black precipitate. Microchemical test (Prussian blue reaction) and wavelength dispersive xâray analysis confirmed this precipitate to be of iron. Mineralogical studies of this black precipitate, using xâray diffraction and scanning electron microscopy, suggested the presence of iron as iron oxides. The cyanobacteria from such black shells were cultured in enriched seawater medium. In this medium also they precipitated iron as confirmed by Prussian blue reaction. They were identified as Plectonema terebrans Born et Flah and Phormidium sp
- âŠ