4 research outputs found

    Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (η T * ~ 33%) solar cell

    Get PDF
    As single junction photovoltaic (PV) technologies both Si heterojunction (HIT) and perovskite based solar cells promise high efficiencies at low cost. Intuitively a traditional tandem cell design with these cells connected in series is expected to improve the efficiency further. Using a self-consistent numerical modeling of optical and transport characteristics however we find that a traditional series connected tandem design suffers from low JSC due to band-gap mismatch and current matching constraints. Specifically a traditional tandem cell with state-of-the-art HIT ( η=24% ) and perovskite ( η=20% ) sub-cells provides only a modest tandem efficiency of ηT~ 25%. Instead we demonstrate that a bifacial HIT/perovskite tandem design decouples the optoelectronic constraints and provides an innovative path for extraordinary efficiencies. In the bifacial configuration the same state-of-the-art sub-cells achieve a normalized output of η∗T  = 33% exceeding the bifacial HIT performance at practical albedo reflections. Unlike the traditional design this bifacial design is relatively insensitive to perovskite thickness variations which may translate to simpler manufacture and higher yield

    Process-to-panel modeling of a-Si/c-Si heterojunction solar cells

    No full text
    The cell-to-panel efficiency gap observed in a-Si/c-Si heterojunction solar cells is one of the key challenges of this technology. To systematically address this issue, we describe an end-to-end modeling framework to explore the implications of process and device variation at the module level. First, a process model is developed to connect the a-Si deposition parameters to the device parameters. Next, a physics based device model is presented which captures the essential features of photo-current and diode injection current using the thermionic-diffusion theory. Using the process and device models, the effects of process conditions on cell performance are explored. Finally, the performance of the panel as a function of device and process parameters is explored to establish panel limits. The insights developed through this process-to-panel modeling framework will improve the understanding of the cell-to-panel efficiency gap of this commercially promising cell technology.United States. Department of Energy. Solar Energy Research InstituteNational Science Foundation (U.S.). Nano-Engineered Electronic Device Simulatio
    corecore