12 research outputs found

    StyleTTS 2: Towards Human-Level Text-to-Speech through Style Diffusion and Adversarial Training with Large Speech Language Models

    Full text link
    In this paper, we present StyleTTS 2, a text-to-speech (TTS) model that leverages style diffusion and adversarial training with large speech language models (SLMs) to achieve human-level TTS synthesis. StyleTTS 2 differs from its predecessor by modeling styles as a latent random variable through diffusion models to generate the most suitable style for the text without requiring reference speech, achieving efficient latent diffusion while benefiting from the diverse speech synthesis offered by diffusion models. Furthermore, we employ large pre-trained SLMs, such as WavLM, as discriminators with our novel differentiable duration modeling for end-to-end training, resulting in improved speech naturalness. StyleTTS 2 surpasses human recordings on the single-speaker LJSpeech dataset and matches it on the multispeaker VCTK dataset as judged by native English speakers. Moreover, when trained on the LibriTTS dataset, our model outperforms previous publicly available models for zero-shot speaker adaptation. This work achieves the first human-level TTS on both single and multispeaker datasets, showcasing the potential of style diffusion and adversarial training with large SLMs. The audio demos and source code are available at https://styletts2.github.io/

    Brain-informed speech separation (BISS) for enhancement of target speaker in multitalker speech perception

    Full text link
    Hearing-impaired people often struggle to follow the speech stream of an individual talker in noisy environments. Recent studies show that the brain tracks attended speech and that the attended talker can be decoded from neural data on a single-trial level. This raises the possibility of “neuro-steered” hearing devices in which the brain-decoded intention of a hearing-impaired listener is used to enhance the voice of the attended speaker from a speech separation front-end. So far, methods that use this paradigm have focused on optimizing the brain decoding and the acoustic speech separation independently. In this work, we propose a novel framework called brain-informed speech separation (BISS)1 in which the information about the attended speech, as decoded from the subject’s brain, is directly used to perform speech separation in the front-end. We present a deep learning model that uses neural data to extract the clean audio signal that a listener is attending to from a multi-talker speech mixture. We show that the framework can be applied successfully to the decoded output from either invasive intracranial electroencephalography (iEEG) or non-invasive electroencephalography (EEG) recordings from hearing-impaired subjects. It also results in improved speech separation, even in scenes with background noise. The generalization capability of the system renders it a perfect candidate for neuro-steered hearing-assistive devices

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Distinct neural encoding of glimpsed and masked speech in multitalker situations

    Full text link
    Humans can easily tune in to one talker in a multitalker environment while still picking up bits of background speech; however, it remains unclear how we perceive speech that is masked and to what degree non-target speech is processed. Some models suggest that perception can be achieved through glimpses, which are spectrotemporal regions where a talker has more energy than the background. Other models, however, require the recovery of the masked regions. To clarify this issue, we directly recorded from primary and non-primary auditory cortex (AC) in neurosurgical patients as they attended to one talker in multitalker speech and trained temporal response function models to predict high-gamma neural activity from glimpsed and masked stimulus features. We found that glimpsed speech is encoded at the level of phonetic features for target and non-target talkers, with enhanced encoding of target speech in non-primary AC. In contrast, encoding of masked phonetic features was found only for the target, with a greater response latency and distinct anatomical organization compared to glimpsed phonetic features. These findings suggest separate mechanisms for encoding glimpsed and masked speech and provide neural evidence for the glimpsing model of speech perception. When humans tune in to one talker in a "cocktail party" scenario, what do we do with the non-target speech? This human intracranial study reveals new insights into the distinct mechanisms by which listeners process target and non-target speech in a crowded environment

    Distinct neural encoding of glimpsed and masked speech in multitalker situations.

    Full text link
    Humans can easily tune in to one talker in a multitalker environment while still picking up bits of background speech; however, it remains unclear how we perceive speech that is masked and to what degree non-target speech is processed. Some models suggest that perception can be achieved through glimpses, which are spectrotemporal regions where a talker has more energy than the background. Other models, however, require the recovery of the masked regions. To clarify this issue, we directly recorded from primary and non-primary auditory cortex (AC) in neurosurgical patients as they attended to one talker in multitalker speech and trained temporal response function models to predict high-gamma neural activity from glimpsed and masked stimulus features. We found that glimpsed speech is encoded at the level of phonetic features for target and non-target talkers, with enhanced encoding of target speech in non-primary AC. In contrast, encoding of masked phonetic features was found only for the target, with a greater response latency and distinct anatomical organization compared to glimpsed phonetic features. These findings suggest separate mechanisms for encoding glimpsed and masked speech and provide neural evidence for the glimpsing model of speech perception

    Not Available

    Full text link
    Not AvailableSoil and Water Assessment Tool (SWAT) was used to assess the water yield and evapotranspiration for the Gomti River basin, India for over a period of 25 years (1985–2010). Streamflow calibration and validation of results showed satisfactory performance (NSE: 0.68–0.51; RSR: 0.56–0.68; |PBIAS|: 2.5–24.3) of the model. The water yield was higher in the midstream sub-basins compared to upstream and downstream sub-basins whereas évapotranspiration per unit area decreased from upstream to the downstream. Both évapotranspiration and water yield at upstream and midstream sub-basins increased from 1985 to 2010, whereas water yield at downstream decreased from 1985 to 2010. We found that the spatial and temporal patterns of évapotranspiration and water yield were closely linked to climatic conditions and irrigation in the basin. The long-term trends in water yield point to a drying tendency of downstream sub-basin covering the districts of Jaunpur and Varanasi.Not Availabl

    Brain-informed speech separation (BISS) for enhancement of target speaker in multitalker speech perception

    Get PDF
    © 2020 Hearing-impaired people often struggle to follow the speech stream of an individual talker in noisy environments. Recent studies show that the brain tracks attended speech and that the attended talker can be decoded from neural data on a single-trial level. This raises the possibility of “neuro-steered” hearing devices in which the brain-decoded intention of a hearing-impaired listener is used to enhance the voice of the attended speaker from a speech separation front-end. So far, methods that use this paradigm have focused on optimizing the brain decoding and the acoustic speech separation independently. In this work, we propose a novel framework called brain-informed speech separation (BISS) in which the information about the attended speech, as decoded from the subject's brain, is directly used to perform speech separation in the front-end. We present a deep learning model that uses neural data to extract the clean audio signal that a listener is attending to from a multi-talker speech mixture. We show that the framework can be applied successfully to the decoded output from either invasive intracranial electroencephalography (iEEG) or non-invasive electroencephalography (EEG) recordings from hearing-impaired subjects. It also results in improved speech separation, even in scenes with background noise. The generalization capability of the system renders it a perfect candidate for neuro-steered hearing-assistive devices.ISSN:1053-8119ISSN:1095-957
    corecore