10 research outputs found
Rural Poverty and Disability in LMICs
Disability is neither a purely medical nor a purely social phenomenon. Rather, it is an outcome of their interplay. The main contributions of our study are two-fold: (i) a synthesis of the extant literature on the links between poverty and disability in LMICs. However, the studies focused on these links in rural areas are sparse. (ii) As rural economies-specifically, agriculture- continue to play an important role in economic growth, it is necessary to deepen our understanding of factors associated with rural disabilities, their association with rural employment and, finally, whether disabilities are associated with rural poverty. We use panel data for India and Ethiopia to illustrate these linkages, using rigorous econometric methodology. In particular, an important contribution is to corroborate the bidirectional association between disability and poverty, noted in many but validated in a few. The CRPD has ensured a concomitant shift in global initiatives, most notably the 2015 Sustainable Development Goals (SDGs) which explicitly recognise disability as a major impediment to elimination of poverty and hunger. In the current development discourse, disability has thus acquired high priority. Although there is a plethora of legislation banning discrimination against the disabled in LMICs-including India and Ethiopia and other LMICs-discrimination against disabled women and elderly is rampant. While it is imperative to fix the policy failures, a remedial strategy has to mainstream the disabled in a sustainable rural development framework, with a key role of the community and mass media in dismantling the barriers to the participation of the disabled in the political, economic and social spheres. Although the challenges are formidable, our study offers grounds for optimism
Commentary on ‘Does Research Reduce Poverty? Assessing the Impacts of Policy?oriented Research in Agriculture’
While entitlement protection is intrinsically a short?term task, building flexible and effective response mechanisms is a long?term one. So a more comprehensive research agenda is needed – especially in the context of countries/regions characterised by low and varying yields and with limited opportunities for trade with the rest of the world. A case is, therefore, made for prioritisation of agricultural research, a pivotal role for the private sector and expansion of technology. Institutions matter a great deal, as ownership and access rights to natural resources (land, water) can have a significant impact on incentives to adopt sustainable agricultural options
Noise analysis of the Indian Pulsar Timing Array data release I
The Indian Pulsar Timing Array (InPTA) collaboration has recently made its first official data release (DR1) for a sample of 14 pulsars using 3.5 years of uGMRT observations. We present the results of single-pulsar noise analysis for each of these 14 pulsars using the InPTA DR1. For this purpose, we consider white noise, achromatic red noise, dispersion measure (DM) variations, and scattering variations in our analysis. We apply Bayesian model selection to obtain the preferred noise models among these for each pulsar. For PSR J1600−3053, we find no evidence of DM and scattering variations, while for PSR J1909−3744, we find no significant scattering variations. Properties vary dramatically among pulsars. For example, we find a strong chromatic noise with chromatic index ∼ 2.9 for PSR J1939+2134, indicating the possibility of a scattering index that doesn’t agree with that expected for a Kolmogorov scattering medium consistent with similar results for millisecond pulsars in past studies. Despite the relatively short time baseline, the noise models broadly agree with the other PTAs and provide, at the same time, well-constrained DM and scattering variations
High Precision Measurements of Interstellar Dispersion Measure with the upgraded GMRT
Pulsar radio emission undergoes dispersion due to the presence of free
electrons in the interstellar medium (ISM). The dispersive delay in the arrival
time of pulsar signal changes over time due to the varying ISM electron column
density along the line of sight. Correcting for this delay accurately is
crucial for the detection of nanohertz gravitational waves using Pulsar Timing
Arrays. In this work, we present in-band and inter-band DM estimates of four
pulsars observed with uGMRT over the timescale of a year using two different
template alignment methods. The DMs obtained using both these methods show only
subtle differences for PSR 1713+0747 and J19093744. A considerable offset is
seen in the DM of PSR J1939+2134 and J21450750 between the two methods. This
could be due to the presence of scattering in the former and profile evolution
in the latter. We find that both methods are useful but could have a systematic
offset between the DMs obtained. Irrespective of the template alignment methods
followed, the precision on the DMs obtained is about pc cm
using only BAND3 and pc cm after combining data from BAND3 and
BAND5 of the uGMRT. In a particular result, we have detected a DM excess of
about pc cm on 24 February 2019 for PSR J21450750.
This excess appears to be due to the interaction region created by fast solar
wind from a coronal hole and a coronal mass ejection (CME) observed from the
Sun on that epoch. A detailed analysis of this interesting event is presented.Comment: 11 pages, 6 figures, 2 tables. Accepted by A&
Noise analysis of the Indian Pulsar Timing Array data release I
The Indian Pulsar Timing Array (InPTA) collaboration has recently made its
first official data release (DR1) for a sample of 14 pulsars using 3.5 years of
uGMRT observations. We present the results of single-pulsar noise analysis for
each of these 14 pulsars using the InPTA DR1. For this purpose, we consider
white noise, achromatic red noise, dispersion measure (DM) variations, and
scattering variations in our analysis. We apply Bayesian model selection to
obtain the preferred noise models among these for each pulsar. For PSR
J16003053, we find no evidence of DM and scattering variations, while for
PSR J19093744, we find no significant scattering variations. Properties vary
dramatically among pulsars. For example, we find a strong chromatic noise with
chromatic index 2.9 for PSR J1939+2134, indicating the possibility of a
scattering index that doesn't agree with that expected for a Kolmogorov
scattering medium consistent with similar results for millisecond pulsars in
past studies. Despite the relatively short time baseline, the noise models
broadly agree with the other PTAs and provide, at the same time,
well-constrained DM and scattering variations.Comment: Accepted for publication in PRD, 30 pages, 17 figures, 4 table
SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion
Abstract: The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era
Low-frequency wideband timing of InPTA pulsars observed with the uGMRT
High-precision measurements of the pulsar dispersion measure (DM) are possible using telescopes with low-frequency wideband receivers. We present an initial study of the application of the wideband timing technique, which can simultaneously measure the pulsar times of arrivals (ToAs) and DMs, for a set of five pulsars observed with the upgraded Giant Metrewave Radio Telescope (uGMRT) as part of the Indian Pulsar Timing Array (InPTA) campaign. We have used the observations with the 300-500 MHz band of the uGMRT for this purpose. We obtain high precision in DM measurements with precisions of the order 10-6 cm-3 pc. The ToAs obtained have sub-μs precision and the rms of the post-fit ToA residuals are in the sub-μs range. We find that the uncertainties in the DMs and ToAs obtained with this wideband technique, applied to low-frequency data, are consistent with the results obtained with traditional pulsar timing techniques and comparable to high-frequency results from other PTAs. This work opens up an interesting possibility of using low-frequency wideband observations for precision pulsar timing and gravitational wave detection with similar precision as high-frequency observations used conventionally. © 2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society