15 research outputs found
Medical prospects of cryptosporidiosis in vivo control using biofabricated nanoparticles loaded with Cinnamomum camphora extracts by Ulva fasciata
Background and Aim: Global efforts are continuing to develop preparations against cryptosporidiosis. This study aimed to investigate the efficacy of biosynthesized Ulva fasciata loading Cinnamomum camphora oil extract on new zinc oxide nanoparticles (ZnONPs shorten to ZnNPs) and silver nanoparticles (AgNPs) as alternative treatments for Cryptosporidium parvum experimental infection in rats.
Materials and Methods: Oil extract was characterized by gas chromatography-mass spectrometry, loaded by U. fasciata on ionic-based ZnO and NPs, and then characterized by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction. Biosafety and toxicity were investigated by skin tests. A total of 105 C. parvum oocysts/rat were used (n = 81, 2–3 W, 80–120 g, 9 male rats/group). Oocysts shedding was counted for 21 d. Doses of each preparation in addition to reference drug were administered daily for 7 d, starting on post-infection (PI) day (3). Nitazoxanide (100 mg) was used as the reference drug. After 3 weeks, the rats were sacrificed for postmortem examination and histopathological examination. Two blood samples/rat/group were collected on the 21st day. Ethylenediaminetetraacetic acid blood samples were also used for analysis of biochemistry, hematology, immunology, micronucleus prevalence, and chromosomal abnormalities.
Results: C. camphora leaves yielded 28.5 ± 0.3 g/kg oil and 20 phycocompounds were identified. Spherical and rod-shaped particles were detected at 10.47–30.98 nm and 18.83–38.39 nm, respectively. ZnNPs showed the earliest anti-cryptosporidiosis effect during 7–17 d PI. Other hematological, biochemical, immunological, histological, and genotoxicity parameters were significantly fruitful; hence, normalized pathological changes induced by infestation were observed in the NPs treatments groups against the infestation-free and Nitazoxanide treated group.
Conclusion: C. camphora, U. fasciata, ZnNPs, and AgNPs have refluxed the pathological effects of infection as well as positively improved host physiological condition by its anticryptosporidial immunostimulant regenerative effects with sufficient ecofriendly properties to be proposed as an alternative to traditional drugs, especially in individuals with medical reactions against chemical commercial drugs
Alginate Extracted from <i>Azotobacter chroococcum</i> Loaded in Selenium Nanoparticles: Insight on Characterization, Antifungal and Anticancer Activities
Cancer is a threatening disease that needs strong therapy with fewer side effects. A lot of different types of chemotherapy or chemo-drugs are used in cancer treatments but have many side effects. The increasing number of antibiotic-resistant microorganisms requires more study of new antimicrobial compounds and delivery and targeting strategies. This work aims to isolate and identify Azotobacter sp., and extract alginate from Azotobacter sp. As well as fabricating selenium nanoparticles using ascorbic acid as reducing agent (As/Se-NPs), and loading extracted alginate with selenium nanoparticles (Alg-Se-NCMs). The As/Se-NPs and Alg-Se-NCMs were categorized by TEM, EDX, UV–Vis spectrophotometry, FT-IR, and zeta potential. The antifungal activities of both As/Se-NPs and Alg-Se-NCMs were investigated against some human pathogen fungi that cause skin infection such as Aspergillus niger (RCMB 002005), Aspergillus fumigatus (RCMB 002008), Cryptococcus neoformans (RCMB 0049001), Candida albicans (RCMB 005003), and Penicillium marneffei (RCMB 001002). The anticancer activities were determined against HCT-116 colorectal cancer and Hep G2 human liver cancer cells. UV spectra of As/Se-NPs and Alg-Se-NCMs confirmed a surface plasmon resonance at 269 and 296 nm, and zeta potential has negative charges −37.2 and −38.7 mV,. Both As/Se-NPs and Alg-Se-NCMs were hexagonal, size ranging from 16.52 to 97.06 and 17.29 to 44.2. Alg-Se-NCMs had anticancer activities against HCT-116 and HepG2. The Alg-Se-NCMs possessed the highest antifungal activities against Cryptococcus neoformans, followed by Aspergillus niger, but did not possess any activities against Penicillium marneffei. Alginate-capped selenium nanoparticles can be used as antifungal and anticancer treatments
Simultaneous bioremediation of Disperse orange-2RL Azo dye and fatty acids production by Scenedesmus obliquus cultured under mixotrophic and heterotrophic conditions
Abstract Several types of green photosynthetic microalgae can grow through the process of heterotrophic growth in the dark with the help of a carbon source instead of the usual light energy. Heterotrophic growth overcomes important limitations in the production of valuable products from microalgae, such as the reliance on light, which complicates the process, raises costs, and lowers the yield of potentially useful products. The present study was conducted to explore the potential growth of green microalga Scenedesmus obliquus under mixotrophic and heterotrophic conditions utilizing Disperse orange 2RL Azo dye as a carbon source to produce a high lipid content and the maximum dye removal percentage. After 7Â days of algal growth with dye under mixotrophic and heterotrophic conditions with varying pH levels (5, 7, 9, and 11), KNO3 concentrations (1, 1.5, 2, and 3Â g/L), and dye concentrations (20, 40, and 60Â ppm); dye removal percentage, algal dry weight, and lipid content were determined. The results showed that the highest decolorization of Disperse orange 2RL Azo dye (98.14%) was attained by S. obliquus in heterotrophic medium supplemented with glucose at the optimal pH 11 when the nitrogen concentration was 1Â g/L and the dye concentration was 20Â ppm. FT-IR spectroscopy of the dye revealed differences in peaks position and intensity before and after algal treatment. S. obliquus has a high concentration of oleic acid, which is enhanced when it is grown with Disperse orange 2RL Azo dye, making it ideal for production of high-quality biodiesel. In general, and in the vast majority of instances, heterotrophic cultivation is substantially less expensive, easier to set up, and requires less maintenance than mixotrophic cultivation. Heterotrophic cultivation allows for large-scale applications such as separate or mixed wastewater treatment along with biofuel production
Assessment of the Antigenotoxic Effects of Alginate and ZnO/Alginate–Nanocomposites Extracted from Brown Alga Fucus vesiculosus in Mice
Mitomycin C (MMC) is an alkylating chemotherapy drug that could induce DNA damage and genetic alteration. It has been used as a model mutagen for in vivo and in vitro studies. The current study aimed to evaluate the protective role of Zinc oxide alginate–nanocomposites (ZnO-Alg/NCMs) against MMC–induced genotoxicity in mice. Animals were treated as follows: the control group, the groups treated with Algin (400 mg/kg b.w), the groups treated with ZnO-Alg/NCMs (400 mg/kg b.w), the group treated with MMC, and the groups treated with MMC plus Algin or ZnO-Alg/NCMs. Pre-treatment with Algin and ZnO-Alg/NCMs was repeated for one or seven days. Zinc oxide alginate-nanocomposites (ZnO-Alg/NCMs) were synthesized with the aim of incorporating the intrinsic properties of their constituents as an antigenotoxic substance. In this study, alginate was extracted from the brown marine alga Fucus vesiculosus, Zinc oxide nanoparticles were synthesized by using water extract of the same alga, and loaded in alginate to synthesize ZnO-Alg/NCMs. ZnO-NPs and ZnO-Alg/NCMs were characterized by TEM, SEM, EDX, and Zeta potential. The obtained results confirmed that by TEM and SEM, ZnO-NPs are rod shaped which modified, when loaded in alginate matrix, into spherical shape. The physical stability of ZnO-Alg/NCMs was reported to be higher than ZnO-NPs due to the presence of more negative charges on ZnO-Alg/NCMs. The EDX analysis indicated that the amount of zinc was higher in ZnO-NPs than ZnO-Alg/NCMs. The in vivo results showed that treatment with MMC induced genotoxic disturbances. The combined treatment with Algin and ZnO-Alg/NCMs succeeded in inducing significant protection against MMC. It could be concluded that ZnO-Algin/NCMs is a promising candidate to protect against MMC–induced genotoxicity
Simultaneous production of biofuel, and removal of heavy metals using marine alga Turbinaria turbinata as a feedstock in NEOM Region, Tabuk
Depletion of fossil fuel and pollution by heavy metals are two major global issues. The cell wall of algae consists of polymers of polysaccharides such as cellulose, hemicellulose, alginate, starch, and many others that are readily hydrolyzed to monosaccharides and hence are amenable to fermentation into bioethanol. Moreover, algae contain lipids that may undergo trans-esterification to biodiesel, and can be absorbed by heavy metals. In this study, extraction of lipids from Turbinaria turbinata (common brown alga) from the beach of Sharma, NEOM, Tabuk, Saudi Arabia by different solvents hexane, methanol, and hexane: methanol (1:1), and trans-esterification was performed to obtain biodiesel and investigated by GC.MS. The alga residue after fats extractions by different solvents was used in bioremediation synthetic wastewater containing 50 ppm of As−3, Co+2, Cu+2, Fe+2, Mn+2, and Zn+2. The residue of defatted alga was hydrolyzed by 2% H2SO4 and then fermented to obtain bioethanol. The combination of hexane: methanol (1:1) gave the greatest amount of petroleum hydrocarbons, which contain Tetradecane, 5-methyl, Octacosane, Pentatriacontane, and a small amount of Cyclotrisiloxane, Hexamethyl. The most effective removal % was obtained with alga residue defatted by hexane: methanol (1:1), and methanol, 100% removal of As−3, 83% Co+2, 95% Cu+2, 97.25% Fe+2, Mn+2 79.69%, Zn+2 90.15% with 2 g alga /L at 3 hours. The lowest value of sugar was obtained with hexane: methanol residue but gave the highest bioethanol efficiency. Thus, it is possible to use Turbinaria turbinata, or brown alga as a feedstock to produce bio-diesel, and bioethanol, and to remove heavy metals from wastewater, which may have a great economic and environmental significance
Fungal Consortia Mediated Bio-Treatment of Organic Matter and Metals Uptake from Sewage Water: Maize Agro-Physiological Assessment
The present investigation aims to improve the efficiency of fungal mono- and mixed cultures in removing organic pollutants and metals from sewage water (SW) for further maize plant response assessments. The reduction in the organic load from the SW was harnessed using a co-culture consortium consisting of Aspergillus niger (KB5), Sordariomycetes sp. (D10), and Coniochaetaceae sp. (LB3). The testing results had evinced removal of up to 88% of the organic matter and more than 96%, 91%, 80%, and 47.6%, of removal percentages for Copper (Cu), Nickel (Ni), Cadmium (Cd), and Lead (Pb), respectively, with the developed fungal consortium [KB5 + D10 + LB3]. After treatment and lab experiments, a reuse of treated and untreated SW for plant irrigation was evaluated towards improving maize plant growth. Irrigation was conducted in pot experiments with three types of water: clean water (Control), untreated (USW), and treated SW by fungal consortia (TSW) and by station treatment plant STP (TSWP) using the randomized complete block (RCB) experimental design. Results of the pots trial revealed that the morphological parameters of SW-irrigated plants are slightly improved compared to water-irrigated plants. Data regarding assimilating area attributes indicated that the most significant enlargement of the assimilation area was observed with TSW-D (1/4) irrigation by 1051 cm2, followed by TSWP-D (0) by 953.96 cm2, then USW-D (1/4) by 716.54 cm2, as compared to plants irrigated with clean water (506.91 cm2). On average, the assimilation areas were larger by 51.76%, 46.86%, and 29.25% in TSW, USW, and TSWP-irrigated plants, respectively. Thus, SW irrigation supports the required qualities and quantities of microelements and water for plant growth. Oxidative stress assessment showed that irrigations with treated SW caused a significant decrease in both enzymatic and non-enzymatic antioxidants, depicting that the treatment lowered the stress of sewage water
Biofabrication of silver nanoparticles using Uncaria tomentosa L.: Insight into characterization, antibacterial activities combined with antibiotics, and effect on Triticum aestivum germination
Herein, we used the aqueous extract of Uncaria tomentosa L. barks (Cat’s claw bark [CCb]) for the biofabrication of silver nanoparticles (CCb-Ag-NPs). The effects of different parameters (Uncaria tomentosa L. aqueous extract, silver nitrate [AgNO3] ratio, temperature, and pH) on the formation of the nanoparticles were investigated using UV scan as a preliminary tool for the detection of surface plasmon resonance of CCb-Ag-NPs. The optimal ratio was 1:7 (Uncaria tomentosa L. extract: 1 mM AgNO3 solution). Fourier-transform infrared spectroscopy revealed the functional groups of both CCb extract and the CCb-Ag-NPs, whose dispersion and quasispherical morphologies were characterized using scanning electron microscopy and transmission electron microscopy. Particle sizes ranged from 19.2 to 38.5 nm. The zeta potential of CCb-Ag-NPs was −34.44 mV. According to energy-dispersive X-ray analysis, the CCb-Ag-NPs contained 28.87% silver. The formation of Ag-NPs was also confirmed by X-ray diffraction pattern analysis. Pristine CCb-Ag-NPs showed antibacterial activity against three pathogenic bacterial strains: Escherichia coli (ATCC 25922), E. coli (ATCC 8739), and Pseudomonas aeruginosa (ATCC 90274). Antibacterial activity increased significantly after loading CCb-Ag-NPs on antibiotic discs containing meropenem and cefoxitin. Low concentrations of CCb-Ag-NPs also enhanced the germination percentage, coleoptile length, and radical root length of Triticum aestivum
Antibacterial Activity of Ulva/Nanocellulose and Ulva/Ag/Cellulose Nanocomposites and Both Blended with Fluoride against Bacteria Causing Dental Decay
One of the most prevalent chronic infectious disorders is tooth decay. Acids produced when plaque bacteria break down sugar in the mouth cause tooth decay. Streptococcus mutans and Lactobacillus acidophilus are the most prominent species related to dental caries. Innovative biocidal agents that integrate with a biomaterial to prevent bacterial colonization have shown remarkable promise as a result of the rapid advancement of nanoscience and nanotechnology. In this study, Ulva lactuca was used as a cellulose source and reducing agent to synthesize nanocellulose and Ulva/Ag/cellulose/nanocomposites. The characterizations of nanocellulose and Ulva/Ag/cellulose/nanocomposites were tested for FT-IR, TEM, SEM, EDS, XRD, and zeta potential. Ulva/Ag/cellulose/nanocomposites and Ulva/nanocellulose, both blended with fluoride, were tested as an antibacterial against S. mutans ATCC 25175 and L. acidophilus CH-2. The results of the SEM proved that nanocellulose is filament-shaped, and FT-IR proved that the functional groups of Ulva/nanocellulose and Ulva/Ag/cellulose/nanocomposites and cellulose are relatively similar but present some small diffusion in peaks. The TEM image demonstrated that the more piratical size distribution of Ulva/Ag/cellulose/nanocomposites ranged from 15 to 20 nm, and Ulva/nanocellulose ranged from 10 to 15 nm. Ulva/Ag/cellulose/nanocomposites have higher negativity than Ulva/nanocellulose. Ulva/Ag/cellulose/nanocomposites and Ulva/nanocellulose possess antibacterial activity against S. mutans ATCC 25175 and L. acidophilus CH-2, but Ulva/Ag/cellulose/nanocomposites are more effective, followed by that blended with fluoride. It is possible to use Ulva/Ag/cellulose/nanocomposites as an antimicrobial agent when added to toothpaste. It is promising to discover an economic and safe nanocomposite product from a natural source with an antimicrobial agent that might be used against tooth bacteria
Assessment of Antioxidant and Anticancer Activities of Microgreen Alga Chlorella vulgaris and Its Blend with Different Vitamins
There is a very vital antioxidant extracted from microgreen alga. Chlorella vulgaris has major advantages and requires high yield worldwide. Some microalgae require vitamins for their growth promotion. This study was held to determine the impact of different vitamins including Thiamine (B1), Riboflavin (B2), Pyridoxine (B6), and Ascorbic acid (c) at concentrations of 0.02, 0.04, 0.06, and 0.08 mg/L of each. Each vitamin was added to the BG11 growth medium to determine the effect on growth, total carbohydrate, total protein, pigments content, antioxidant activities of Chlorella vulgaris. Moreover, antitumor effects of methanol extract of C. vulgaris without and with the supplement of thiamine against Human prostate cancer (PC-3), Hepatocellular carcinoma (HEPG-2), Colorectal carcinoma (HCT-116) and Epitheliod Carcinoma (Hela) was estimated in vitro. C. vulgaris supplemented with various vitamins showed a significant increase in biomass, pigment content, total protein, and total carbohydrates in comparison to the control. Thiamine was the best vitamin influencing as an antioxidant. C. vulgaris supplemented with thiamine had high antitumor effects in vitro. So, it’s necessary to add vitamins to BG11 media for enhancement of the growth and metabolites