2 research outputs found
Coalition Resilient Outcomes in Max k-Cut Games
We investigate strong Nash equilibria in the \emph{max -cut game}, where
we are given an undirected edge-weighted graph together with a set of colors. Nodes represent players and edges capture their mutual
interests. The strategy set of each player consists of the colors. When
players select a color they induce a -coloring or simply a coloring. Given a
coloring, the \emph{utility} (or \emph{payoff}) of a player is the sum of
the weights of the edges incident to , such that the color chosen
by is different from the one chosen by . Such games form some of the
basic payoff structures in game theory, model lots of real-world scenarios with
selfish agents and extend or are related to several fundamental classes of
games.
Very little is known about the existence of strong equilibria in max -cut
games. In this paper we make some steps forward in the comprehension of it. We
first show that improving deviations performed by minimal coalitions can cycle,
and thus answering negatively the open problem proposed in
\cite{DBLP:conf/tamc/GourvesM10}. Next, we turn our attention to unweighted
graphs. We first show that any optimal coloring is a 5-SE in this case. Then,
we introduce -local strong equilibria, namely colorings that are resilient
to deviations by coalitions such that the maximum distance between every pair
of nodes in the coalition is at most . We prove that -local strong
equilibria always exist. Finally, we show the existence of strong Nash
equilibria in several interesting specific scenarios.Comment: A preliminary version of this paper will appear in the proceedings of
the 45th International Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM'19
Coalition Resilient Outcomes in Max k-Cut Games
We investigate strong Nash equilibria in the max k-cut game, where we are given an undirected edge-weighted graph together with a set {1,…,k} of k colors. Nodes represent players and edges capture their mutual interests. The strategy set of each player v consists of the k colors. When players select a color they induce a k-coloring or simply a coloring. Given a coloring, the utility (or payoff) of a player u is the sum of the weights of the edges {u,v} incident to u, such that the color chosen by u is different from the one chosen by v. Such games form some of the basic payoff structures in game theory, model lots of real-world scenarios with selfish agents and extend or are related to several fundamental classes of games.
Very little is known about the existence of strong equilibria in max k-cut games. In this paper we make some steps forward in the comprehension of it. We first show that improving deviations performed by minimal coalitions can cycle, and thus answering negatively the open problem proposed in [13]. Next, we turn our attention to unweighted graphs. We first show that any optimal coloring is a 5-SE in this case. Then, we introduce x-local strong equilibria, namely colorings that are resilient to deviations by coalitions such that the maximum distance between every pair of nodes in the coalition is at most x. We prove that 1-local strong equilibria always exist. Finally, we show the existence of strong Nash equilibria in several interesting specific scenarios