35 research outputs found

    [Arg 14

    Full text link

    Pharmacological profile of nociceptin/orphanin FQ receptors

    No full text
    1. Nociceptin/orphanin FQ (NC) and its receptor (OP4) represent a novel peptide/receptor system pharmacologically distinct from classical opioid systems. 2. Via OP4 receptor activation, NC regulates several biological functions, both at peripheral and central levels; therefore, the OP4 receptor may be viewed as a novel target for drug development. However, the pharmacology of this receptor is still in its infancy, with few molecules interacting selectively with this receptor. 3. In the present article, we review the findings of studies that have investigated the pharmacological profile of ligands selective for the OP4 receptor, these being two antagonists, the peptide [Nphe1]NC(1-13)NH2 and the non-peptide J-113397, and two agonists, the peptide [Arg14,Lys15]NC, and the non- peptide Ro 64-6198. 4. The results of these studies indicate that agents that selectively activate or block the OP4 receptor may represent new potential drugs for the treatment of human diseases

    Nociceptin/orphanin FQ receptor ligands,

    No full text
    Nociceptin (NC), alias Orphanin FQ (OFQ) is a heptadecapeptide structurally related to opioid peptides, especially Dynorphin A, which, however, does not interact with classic opioid receptors. NC selectively activates its own receptor (OP(4)), which has been shown to be insensitive to the naturally occurring opioid peptides as well as to a large number of non-peptide opioid receptor ligands, including naloxone. Thus, the NC/OP(4) system represents a new peptide-based signaling pathway, which is pharmacologically distinct from the opioid systems. The pharmacological tools available for investigating NC actions are at present rather limited and include: 1) peptide ligands obtained from structure activity studies performed using NC(1-13)NH(2) as a template or discovered by screening peptide combinatorial libraries; 2) nonpeptide ligands that are either molecules already known to interact with classic opioid receptors or novel molecules designed and synthesized as selective ligands of the OP(4) receptor. In the present paper the functional data obtained from both in vitro and in vivo studies with each relevant OP(4) receptor ligand will be analyzed and discussed comparing the advantages and disadvantages of each molecule. We hope that the present work will aid investigators, working in the NC/OP(4) field, in the choice of the pharmacological tools suitable for their experiments

    Nociceptin/orphanin FQ receptor ligands,

    No full text
    Nociceptin (NC), alias Orphanin FQ (OFQ) is a heptadecapeptide structurally related to opioid peptides, especially Dynorphin A, which, however, does not interact with classic opioid receptors. NC selectively activates its own receptor (OP(4)), which has been shown to be insensitive to the naturally occurring opioid peptides as well as to a large number of non-peptide opioid receptor ligands, including naloxone. Thus, the NC/OP(4) system represents a new peptide-based signaling pathway, which is pharmacologically distinct from the opioid systems. The pharmacological tools available for investigating NC actions are at present rather limited and include: 1) peptide ligands obtained from structure activity studies performed using NC(1-13)NH(2) as a template or discovered by screening peptide combinatorial libraries; 2) nonpeptide ligands that are either molecules already known to interact with classic opioid receptors or novel molecules designed and synthesized as selective ligands of the OP(4) receptor. In the present paper the functional data obtained from both in vitro and in vivo studies with each relevant OP(4) receptor ligand will be analyzed and discussed comparing the advantages and disadvantages of each molecule. We hope that the present work will aid investigators, working in the NC/OP(4) field, in the choice of the pharmacological tools suitable for their experiments

    A new selective antagonist of the nociceptin receptor

    No full text
    [Phe1psi(CH2-NH)Gly2]NC(1-13)NH2 has been tested in the electrically stimulated guinea pig ileum and mouse vas deferens, two nociceptin sensitive preparations. The new compound showed per se little or no effect in the two tissues, but it displaced to the right the concentration-response curves of nociceptin in a concentration-dependent manner. Schild analyses of the data indicated a competitive type of antagonism and pA2 values of 7.02 and 6.75 in the guinea-pig ileum and the mouse vas deferens, respectively. At 10 microM [Phe1psi(CH2-NH)Gly2]NC(1-13)NH2 does not modify either the inhibitory effect of deltorphin I (the selective delta opioid receptor agonist) in the mouse vas deferens or that of dermorphine (the selective mu opioid receptor agonist) in the guinea-pig ileum. The present findings indicate that [Phe1psi(CH2-NH)Gly2]NC(1-13)NH2 is a selective antagonist of the nociceptin receptor

    Structure-activity study of the nociceptin(1-13)-NH2 N-terminal tetrapeptide and discovery of a nociceptin receptor antagonist

    No full text
    In the present study, the minimal fragment sequence required to fully activate the nociceptin (NC) receptor, namely NC(1-13)-NH2, was used as template for the design of a series of new compounds. Changes were made in the N-terminal tetrapeptide Phe-Gly-Gly-Phe, which has been shown to be essential for receptor occupation and activation. The new compounds were tested for their ability to inhibit the electrically evoked contraction of the mouse vas deferens, a pharmacological preparation sensitive to NC. Results obtained indicate that (a) the replacement of Gly2 or Gly3 with an aromatic residue (Phe) of L or D chirality eliminates the ability of the peptide to occupy the NC receptor; (b) the distance between Phe1 and Phe4 of NC appears to be critical, since any alteration of it leads to a marked decrease or a total elimination of biological activity; and (c) the insertion of a pseudopeptide bond between Phe1 and Gly2 maintains affinity but eliminates the ability of the peptide to activate the NC receptor and leads to antagonism. The peptide [Phe1psi(CH2-NH)Gly2]-NC(1-13)-NH2 acts as a selective NC receptor antagonist and is inactive on opioid receptors. The results summarized in this paper confirm and extend our previous findings by showing that the structural requirements for NC binding to its receptor are clearly different from those of opioids; in addition, this structure-activity study has led to the identification of the first NC receptor selective antagonist

    In vitro pharmacological profile of peptide III-BTD, a novel ligand for nociceptin/orphanin FQ receptors

    No full text
    Peptide III-BTD has been recently identified as a non-selective nociceptin/orphanin FQ receptor ligand by screening of a synthetic peptide combinatorial library. In the present study we evaluated the pharmacological profile of peptide III-BTD in isolated tissues (mouse and rat vas deferens, guinea pig ileum) sensitive to both nociceptin and opioid peptides. In the mouse vas deferens and guinea pig ileum, III-BTD concentration dependently inhibited the electrically induced twitch (pEC50 5.91 and 6.18, respectively; Emax 94 +/- 1% and 94 +/- 2%) and this effect was blocked by naloxone (1 microM). In the rat vas deferens, III-BTD was inactive in most of the tissues, while in few others it elicited a slight inhibition only at the highest concentration tested (10 microM). In the presence of 1 microM naloxone, 1 microM III-BTD shifted to the right the concentration response curve of nociceptin in a parallel manner, showing pKB values in the range 6.6-6.9. These data confirm on native nociceptin receptors the pharmacological profile of peptide III-BTD which behaved as a mixed nociceptin receptor antagonist/opioid receptor agonist in the [35S]GTPyS binding assay performed on cells expressing the recombinant human receptors

    Characterization of nociceptin receptors in the periphery: in vitro and in vivo studies

    No full text
    Nociceptin (NC), a series of NC fragments, naloxone as well as the pseudopeptide [Phe1psi(CH2-NH)Gly2]NC(1-13)NH2 ([F/G]NC(1-13)NH2) were used to characterize NC receptors in peripheral isolated organs and in vivo. Experiments on isolated organs were performed in the mouse (mVD) and rat (rVD) vas deferens (noradrenergic nerve terminals), in the guinea pig ileum (gpI; cholinergic nerves) and in the renal pelvis (gpRP; sensory nerves), and, in vivo, by measuring the blood pressure (BP) and heart rate (HR) in anaesthetised rats. NC, NCNH2 and NC(1-13)NH2 acted as full agonists with similar affinities, while shorter fragments (e.g. NC(1-12)NH2, NC(1-9)NH2, NC(1-5)NH2) were much weaker or inactive. The inhibitory effects of NC were not modified by naloxone. [F/G]NC(1-13)NH2 acted as an antagonist with similar pA2-values (6.75 mVD, 6.83 rVD, 7.26 gpI) in the three species. In addition, it blocked NC actions in the rat in vivo. Linear Schild plots with slopes near to unity indicated that [F/G]NC(1-13)NH2 is a competitive antagonist, specific for NC receptors both in vitro (since it was inactive on opioid receptors) and in vivo (since it was inactive against carbachol). [F/G]NC(1-13)NH2 showed a residual agonistic activity in vitro (alpha = 0.2-0.3 in the rVD and gpI) and especially in vivo (alpha = 0.4 BP, 0.2 HR). These pharmacological data indicate that NC and related peptides exert their inhibitory effects in peripheral organs of various species by activating the same receptor type. Moreover, [F/G]NC(1-13)NH2 appears to be a useful tool for receptor characterization and classification
    corecore