3,676 research outputs found

    Metal abundances of RR Lyrae stars in the metal rich globular cluster NGC 6441

    Full text link
    Low resolution spectra have been used to measure individual metal abundances of RR Lyrae stars in NGC 6441, a Galactic globular cluster known to have very unusual horizontal branch morphology and periods of the RR Lyrae stars for its high metallicity. We find an average metal abundance of [Fe/H]=-0.69 +/- 0.06 (r.m.s.=0.33 dex) and [Fe/H]=-0.41 +/- 0.06 (r.m.s.=0.36 dex) on Zinn & West and Carretta & Gratton metallicity scales, respectively, consistent with the cluster metal abundance derived by Armandroff & Zinn. Most of the metallicities were extrapolated from calibration relations defined for [Fe/H] < -1; however, they are clearly high and contrast with the rather long periods of the NGC 6441 variables, thus confirming that the cluster does not fit in the general Oosterhoff classification scheme. The r.m.s. scatter of the average is larger than observational errors (0.15-0.16 dex) possibly indicating some spread in metallicity. However, even the metal poor variables, if confirmed to be cluster members, are still more metal rich than those commonly found in the Oosterhoff type II globular clusters.Comment: Accepted for publication on ApJ Letter

    Phonons and structures of tetracene polymorphs at low temperature and high pressure

    Full text link
    Crystals of tetracene have been studied by means of lattice phonon Raman spectroscopy as a function of temperature and pressure. Two different phases (polymorphs I and II) have been obtained, depending on sample preparation and history. Polymorph I is the most frequently grown phase, stable at ambient conditions. A pressure induced phase transition, observed above 1 GPa, leads to polymorph II, which is also obtained at temperatures below 140 K. Polymorph II can also be maintained at ambient conditions. We have calculated the crystallographic structures and phonon frequencies as a function of temperature, starting from the configurations of the energy minima found by exploring the potential energy surface of crystalline tetracene. The spectra calculated for the first and second deepest minima match satisfactorily those measured for polymorphs I and II, respectively. All published x-ray structures, once assigned to the appropriate polymorph, are also reproduced.Comment: 8 pages, 5 figures, RevTeX4, update after referees report

    The Quantum-Mechanical Position Operator in Extended Systems

    Full text link
    The position operator (defined within the Schroedinger representation in the standard way) becomes meaningless when periodic boundary conditions are adopted for the wavefunction, as usual in condensed matter physics. We show how to define the position expectation value by means of a simple many-body operator acting on the wavefunction of the extended system. The relationships of the present findings to the Berry-phase theory of polarization are discussed.Comment: Four pages in RevTe

    BEDT-TTF organic superconductors: the entangled role of phonons

    Full text link
    We calculate the lattice phonons and the electron-phonon coupling of the organic superconductor \kappa-(BEDT-TTF)_2 I_3, reproducing all available experimental data connected to phonon dynamics. Low-frequency intra-molecular vibrations are strongly mixed to lattice phonons. Both acoustic and optical phonons are appreciably coupled to electrons through the modulation of the hopping integrals (e-LP coupling). By comparing the results relevant to superconducting \kappa- and \beta-(BEDT-TTF)_2 I_3, we show that electron-phonon coupling is fundamental to the pairing mechanism. Both e-LP and electron-molecular vibration (e-MV) coupling are essential to reproduce the critical temperatures. The e-LP coupling is stronger, but e-MV is instrumental to increase the average phonon frequency.Comment: 4 pages, including 4 figures. Published version, with Ref. 17 corrected after publicatio

    Deuterons and space-momentum correlations in high energy nuclear collisions

    Get PDF
    Using a microscopic transport model together with a coalescence after-burner, we study the formation of deuterons in Au + Au central collisions at s = 200 AGeV . It is found that the deuteron transverse momentum distributions are strongly a ected by the nucleon space-momentum correlations, at the moment of freeze-out, which are mostly determined by the number of rescatterings. This feature is useful for studying collision dynamics at ultrarelativistic energies

    Distances, ages, and epoch of formation of globular clusters

    Get PDF
    We review the results on distances and absolute ages of galactic globular clusters (GCs) obtained after the release of the Hipparcos catalogue. Several methods for the Population II local distance scale are discussed, exploiting NEW RESULTS for RR Lyraes in the Large Magellanic Cloud (LMC). We find that the so-called Short and Long Distance Scales may be reconciled whether a consistent reddening scale is adopted for Cepheids and RR Lyrae variables in the LMC. Distances and ages for the 9 clusters discussed in Paper I are re-derived using an enlarged sample of local subdwarfs, which includes about 90% of the metal-poor dwarfs with accurate parallaxes (Delta p/p < 0.12) in the whole Hipparcos catalogue. On average, our revised distance moduli are decreased by 0.04 mag with respect to Paper I. The corresponding age of the GCs is t=11.5+-2.6 Gyr (95% confidence range). The relation between Mv(ZAHB) and metallicity for the nine programme clusters turns out to be Mv(ZAHB)=(0.18+-0.09)([Fe/H]+1.5)+(0.53+-0.12).Thanks to Hipparcos the major contribution to the total error budget associated with the subdwarf fitting technique has been moved from parallaxes to photometric calibrations, reddening and metallicity scale. This total uncertainty still amounts to about +-0.12 mag. Comparing the corresponding (true) LMC distance modulus 18.64+-0.12 mag with other existing determinations, we conclude that at present the best estimate for the distance of the LMC is: 18.54+-0.03+-0.06, suggesting that distances from the subdwarf fitting method are 1 sigma too long. Consequently, our best estimate for the age of the GCs is revised to: Age = 12.9+-2.9 Gyr (95% confidence range). The best relation between Mv(ZAHB) and [Fe/H] is: Mv(ZAHB) =(0.18+-0.09)([Fe/H]+1.5)+(0.63+-0.07).Comment: 76 pages, 6 encapsulated figures and 6 tables. Latex, uses aasms4.sty. Revised and improved version, with new data on field RR Lyraes in LMC. Accepted in the Astrophysical Journa

    Dibaryons with Strangeness: their Weak Nonleptonic Decay using SU(3) Symmetry and how to find them in Relativistic Heavy-Ion Collisions

    Get PDF
    Weak SU(3) symmetry is successfully applied to the weak hadronic decay amplitudes of octet hyperons. Weak nonmesonic and mesonic decays of various dibaryons with strangeness, their dominant decay modes, and lifetimes are calculated. Production estimates for BNL's Relativistic Heavy-Ion Collider are presented employing wave function coalescence. Signals for detecting strange dibaryon states in heavy-ion collisions and revealing information about the unknown hyperon-hyperon interactions are outlined.Comment: 4 pages, 2 figures, uses RevTeX, discussion about the model of the weak decay and experimental signals extended, references update

    Dynamical-charge neutrality at a crystal surface

    Get PDF
    For both molecules and periodic solids, the ionic dynamical charge tensors which govern the infrared activity are known to obey a dynamical neutrality condition. This condition enforces their sum to vanish (over the whole finite system, or over the crystal cell, respectively). We extend this sum rule to the non trivial case of the surface of a semiinfinite solid and show that, in the case of a polar surface of an insulator, the surface ions cannot have the same dynamical charges as in the bulk. The sum rule is demonstrated through calculations for the Si-terminated SiC(001) surface.Comment: 4 pages, latex file, 1 postscript figure automatically include

    Quasi Harmonic Lattice Dynamics and Molecular Dynamics calculations for the Lennard-Jones solids

    Full text link
    We present Molecular Dynamics (MD), Quasi Harmonic Lattice Dynamics (QHLD) and Energy Minimization (EM) calculations for the crystal structure of Ne, Ar, Kr and Xe as a function of pressure and temperature. New Lennard-Jones (LJ) parameters are obtained for Ne, Kr and Xe to reproduce the experimental pressure dependence of the density. We employ a simple method which combines results of QHLD and MD calculations to achieve densities in good agreement with experiment from 0 K to melting. Melting is discussed in connection with intrinsic instability of the solid as given by the QHLD approximation. (See http://www.fci.unibo.it/~valle for related papers)Comment: 7 pages, 5 figures, REVte
    • …
    corecore