1,032 research outputs found

    Tolerance of Plant Monoterpenes and Diterpene Acids by Four Species of Lymantriidae (Lepidoptera) Exhibiting a Range of Feeding Specificities

    Get PDF
    Lymantriidae (Lepidoptera) is a family of leaf-feeding insects that includes some of the most damaging forest pests worldwide. Species within this family vary widely in feeding specificity. We evaluated the ability of four species, Douglas fir tussock moth (Orgyia pseudotsugata McDunnough), nun moth (Lymantria monacha L. ), rusty tussock moth (Orgyia antiqua (L.)), and white- marked tussock moth (Orgyia leucostigma (J. E. Smith)), to contend with one of the most ubiquitous and effective groups of plant defense compounds, terpenoids. We selected these species to provide a range of feeding specificities on conifer hosts, from obligate to occasional. We evaluated the effects of three monoterpenes (bornyl acetate, limonene, and myrcene) and two diterpene acids (isopimaric acid and neoabietic acid) on larval performance. Although these four species differ in their feeding ranges, utilization of conifers as hosts, and other life history processes, each shows a relatively high tolerance for conifer terpenes. The mean relative growth rates, relative consumption rates, and development times were not affected by these monoterpenes and diterpene acids when administered at concentrations present in the foliage of conifers in which they are most abundant. The most likely explanation seems to be metabolism, as a) no limonene or myrcene were recovered from frass or larvae, and b) borneol, an apparent metabolite of bornyl acetate, was recovered from frass of Douglas fir tussock moth, rusty tussock moth, and white-marked tussock moth, and from tissues of Douglas fir tussock moth and white-marked tussock moth

    Circulating leukocytes and oxidative Stress in cardiovascular diseases: a state of the art

    Get PDF
    Increased oxidative stress from both mitochondrial and cytosolic sources contributes to the development and the progression of cardiovascular diseases (CVDs), and it is a target of therapeutic interventions. The numerous efforts made over the last decades in order to develop tools able to monitor the oxidative stress level in patients affected by CVDs rely on the need to gain information on the disease state. However, this goal has not been satisfactorily accomplished until now. Among others, the isolation of circulating leukocytes to measure their oxidant level offers a valid, noninvasive challenge that has been tested in few pathological contexts, including hypertension, atherosclerosis and its clinical manifestations, and heart failure. Since leukocytes circulate in the blood stream, it is expected that they might reflect quite closely both systemic and cardiovascular oxidative stress and provide useful information on the pathological condition. The results of the studies discussed in the present review article are promising. They highlight the importance of measuring oxidative stress level in circulating mononuclear cells in different CVDs with a consistent correlation between degree of oxidative stress and severity of CVD and of its complications. Importantly, they also point to a double role of leukocytes, both as a marker of disease condition and as a direct contributor to disease progression. Finally, they show that the oxidative stress level of leukocytes reflects the impact of therapeutic interventions. It is likely that the isolation of leukocytes and the measurement of oxidative stress, once adequately developed, may represent an eligible tool for both research and clinical purposes to monitor the role of oxidative stress on the promotion and progression of CVDs, as well as the impact of therapies

    Tolerance of Plant Monoterpenes and Diterpene Acids by Four Species of Lymantriidae (Lepidoptera) Exhibiting a Range of Feeding Specificities

    Get PDF
    Lymantriidae (Lepidoptera) is a family of leaf-feeding insects that includes some of the most damaging forest pests worldwide. Species within this family vary widely in feeding specificity. We evaluated the ability of four species, Douglas fir tussock moth (Orgyia pseudotsugata McDunnough), nun moth (Lymantria monacha L. ), rusty tussock moth (Orgyia antiqua (L.)), and white- marked tussock moth (Orgyia leucostigma (J. E. Smith)), to contend with one of the most ubiquitous and effective groups of plant defense compounds, terpenoids. We selected these species to provide a range of feeding specificities on conifer hosts, from obligate to occasional. We evaluated the effects of three monoterpenes (bornyl acetate, limonene, and myrcene) and two diterpene acids (isopimaric acid and neoabietic acid) on larval performance. Although these four species differ in their feeding ranges, utilization of conifers as hosts, and other life history processes, each shows a relatively high tolerance for conifer terpenes. The mean relative growth rates, relative consumption rates, and development times were not affected by these monoterpenes and diterpene acids when administered at concentrations present in the foliage of conifers in which they are most abundant. The most likely explanation seems to be metabolism, as a) no limonene or myrcene were recovered from frass or larvae, and b) borneol, an apparent metabolite of bornyl acetate, was recovered from frass of Douglas fir tussock moth, rusty tussock moth, and white-marked tussock moth, and from tissues of Douglas fir tussock moth and white-marked tussock moth

    Amiodarone-induced pulmonary toxicity with an excellent response to treatment

    Get PDF
    Amiodarone is an anti-arrhythmic drug widely used, but its administration can be associated with several adverse side-effects. Among these, amiodarone-induced pulmonary toxicity (APT) occurs in 4-17% of cases and, if not early diagnosed and treated, may evolve towards pulmonary fibrosis and respiratory failure. A 76 years-old-man went to the hospital for accidental trauma. The patient did not report respiratory symptoms but was suffering from atrial fibrillation treated with amiodarone 200 mg/day from three years (cumulative dose >150 gr). HRCT showed ground-glass opacities and nodules in both lungs. The patient underwent fibreoptic bronchoscopy with BAL. Cytologic examination of BALF sediment put in evidence foamy macrophages. The electronic microscopy revealed into the alveolar macrophages "… the presence of multilamellar intracytoplasmic bodies and lysosomes, loads of lipid material". LFTs showed a restrictive syndrome and an impairment of DLCO. Amiodarone discontinuation and steroid administration led to the regression of radiological lesions and the recovery of lung function. Patients taking amiodarone can experience APT. They should perform a basal chest x-ray with LFTs before starting therapy. Monitoring could reveal early the pulmonary toxicity, and patients can respond favourably to the treatment

    The inhomogeneous mechanical behaviour of Ascending Thoracic Aortic Aneurism (ATAA)

    Get PDF
    Surgical management of ascending thoracic aortic aneurysms (aTAAs) relies on maximum diameter, growth rate, and presence of connective tissue disorders. The surgical decision however is often not considering that dissection and rupture do occur in patients who do not meet criteria for surgical repair [1,2]. In this study the authors aim to investigate the mechanical properties of aTAAs to be implemented in computational biomechanics models for a preclinical risk evaluation. Additionally, in some recent studies, some data about the biomechanical properties of the aTAAs have been reported [3], but without any relation to bicuspidal or tricuspidal aTAA. The aim of this study was to investigate aTAA mechanical properties using a biaxial system to compare the circumferential and axial stress-strain relations for bicuspidal and tricuspidal aTAAs

    Urgent Carotid Surgery: Is It Still out of Debate?

    Get PDF
    Patients with symptomatic tight carotid stenosis have an increased short-time risk of stroke and an increased long-term risk of ischaemic vascular events compared with the general population. The aim of this study is to assess the safety, efficacy, and limitations of urgent CEA or CAS, in patients with carotid stenosis greater than 70% and clinically characterized by recurrent TIA or brain damage following a stroke (<2.5 cm). This study involved 28 patients divided into two groups. Group A consisted of sixteen patients who had undergone CEA, and group B consisted of twelve patients who had undergone CAS. Primary endpoints were mortality, neurological morbidity (by NIHSS) and postoperative hemorrhagic cerebral conversion, at 30 days. Ten patients (62.5%) of group A experienced an improvement in their initial neurological deficit while in 4 cases (26%) the deficit remained stable. Two cases of neurologic mortality are presented. At 1 month, 9 patients (75%) of group B experienced an improvement in their initial neurological deficit while 3 patients (25%) had a neurological impairment. Urgent or deferred surgical or endovascular treatment have a satisfactory outcome considering the profile in very high-risk patient population. Otherwise in selected patients CEA seems to be preferred to CAS

    Transcatheter heart valve implantation in bicuspid patients with self-expanding device

    Get PDF
    Bicuspid aortic valve (BAV) patients are conventionally not treated by transcathether aortic valve implantation (TAVI) because of anatomic constraint with unfavorable outcome. Patient-specific numerical simulation of TAVI in BAV may predict important clinical insights to assess the con-formability of the transcathether heart valves (THV) implanted on the aortic root of members of this challenging patient population. We aimed to develop a computational approach and virtually simulate TAVI in a group of n.6 stenotic BAV patients using the self-expanding Evolut Pro THV. Specif-ically, the structural mechanics were evaluated by a finite-element model to estimate the deformed THV configuration in the oval bicuspid anatomy. Then, a fluid–solid interaction analysis based on the smoothed-particle hydrodynamics (SPH) technique was adopted to quantify the blood-flow patterns as well as the regions at high risk of paravalvular leakage (PVL). Simulations demonstrated a slight asymmetric and elliptical expansion of the THV stent frame in the BAV anatomy. The contact pressure between the luminal aortic root surface and the THV stent frame was determined to quantify the device anchoring force at the level of the aortic annulus and mid-ascending aorta. At late diastole, PVL was found in the gap between the aortic wall and THV stent frame. Though the modeling framework was not validated by clinical data, this study could be considered a further step towards the use of numerical simulations for the assessment of TAVI in BAV, aiming at understanding patients not suitable for device implantation on an anatomic basis

    Regional biomechanical characterization of human ascending aortic aneurysms: Microstructure and biaxial mechanical response

    Get PDF
    : The ascending thoracic aortic aneurysm (ATAA) is a permanent dilatation of the vessel with a high risk of adverse events, and shows heterogeneous properties. To investigate regional differences in the biomechanical properties of ATAAs, tissue samples were collected from 10 patients with tricuspid aortic valve phenotype and specimens from minor, anterior, major, and posterior regions were subjected to multi-ratio planar biaxial extension tests and second-harmonic generation (SHG) imaging. Using the data, parameters of a microstructure-motivated constitutive model were obtained considering fiber dispersion. SHG imaging showed disruptions in the organization of the layers. Structural and material parameters did not differ significantly between regions. The non-symmetric fiber dispersion model proposed by Holzapfel et&nbsp;al. [25] was used to fit the data. The mean angle of collagen fibers was negatively correlated between minor and anterior regions, and the parameter associated with collagen fiber stiffness was positively correlated between minor and major regions. Furthermore, correlations were found between the stiffness of the ground matrix and the mean fiber angle, and between the parameter associated with the collagen fiber stiffness and the out-of-plane dispersion parameter in the posterior and minor regions, respectively. The experimental data collected in this study contribute to the biomechanical data available in the literature on human ATAAs. Region-specific parameters for the constitutive models are fundamental to improve the current risk stratification strategies, which are mainly based on aortic size. Such investigations can facilitate the development of more advanced finite element models capable of capturing the regional heterogeneity of pathological tissues. STATEMENT OF SIGNIFICANCE: Tissue samples of human ascending thoracic aortic aneurysms (ATAA) were collected. Samples from four regions underwent multi-ratio planar biaxial extension tests and second-harmonic generation imaging. Region-specific parameters of a microstructure-motivated model considering fiber dispersion were obtained. Structural and material parameters did not differ significantly between regions, however, the mean fiber angle was negatively correlated between minor and anterior regions, and the parameter associated with collagen fiber stiffness was positively correlated between minor and major regions. Furthermore, correlations were found between the stiffness of the ground matrix and the mean fiber angle, and between the parameter associated with the collagen fiber stiffness and the out-of-plane dispersion parameter in the posterior and minor regions, respectively. This study provides a unique set of mechanical and structural data, supporting the microstructural influence on the tissue response. It may facilitate the development of better finite element models capable of capturing the regional tissue heterogeneity

    Atlas-Based Evaluation of Hemodynamic in Ascending Thoracic Aortic Aneurysms

    Get PDF
    Atlas-based analyses of patients with cardiovascular diseases have recently been explored to understand the mechanistic link between shape and pathophysiology. The construction of probabilistic atlases is based on statistical shape modeling (SSM) to assess key anatomic features for a given patient population. Such an approach is relevant to study the complex nature of the ascending thoracic aortic aneurysm (ATAA) as characterized by different patterns of aortic shapes and valve phenotypes. This study was carried out to develop an SSM of the dilated aorta with both bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV), and then assess the computational hemodynamic of virtual models obtained by the deformation of the mean template for specific shape boundaries (i.e., ±1.5 standard deviation, σ). Simulations demonstrated remarkable changes in the velocity streamlines, blood pressure, and fluid shear stress with the principal shape modes such as the aortic size (Mode 1), vessel tortuosity (Mode 2), and aortic valve morphologies (Mode 3). The atlas-based disease assessment can represent a powerful tool to reveal important insights on ATAA-derived hemodynamic, especially for aneurysms which are considered to have borderline anatomies, and thus challenging decision-making. The utilization of SSMs for creating probabilistic patient cohorts can facilitate the understanding of the heterogenous nature of the dilated ascending aorta
    corecore