9 research outputs found
Causes and consequences of the postfire increase in deer mouse (Peromyscus maniculatus) abundance
Wildfire triggers an increase in deer mouse (Peromyscus maniculatus) abundance. Here, I describe this phenomenon, investigate its causes, and explore the consequences of the postfire increase in mice for conifer recruitment in burned forest. I documented a shift in small mammal communities away from more specialized species such as red-backed voles (Myodes gapperi) and shrews (Sorex spp.) and towards greater abundance of generalist deer mice after a wildfire in montane forest. I conducted a meta-analysis of published studies on the abundance of small mammals in disturbed versus undisturbed forests and established that the pattern of increased deer mouse abundance holds for both natural (wildfire) and anthropogenic (different forms of forest harvest) disturbances. However, the postfire increase is significantly stronger than the increase after logging. In another forest wildfire, I tested the four most commonly proposed explanations of this increase: (1) greater abundance of food resources in burned areas, (2) increased foraging efficiency of deer mice, (3), predatory release, and (4) source - sink dynamics, with burned areas acting as high abundance dispersal sink. However, none were supported by data. Thus, I concluded that the existing explanations of postfire increase in deer mouse abundance are unsatisfactory. Finally, I investigated the magnitude and impact of seed predation by deer mice in burned and unburned forest. In seed offerings experiments, overnight conifer seed removal associated with deer mice was more intense in burned than in unburned stands. In germination experiments, emergence of seedlings in cages with openings that allowed access by deer mice was extremely rare in burned and unburned forest. However, in closed cages (deer mice excluded), seedling emergence was low in unburned forest, but considerably higher in burned forest. Wildfire created favorable conditions for seedling recruitment but seed predation by deer mice appeared to remove this advantage
Consequences of Intraspecific Variation in Seed Dispersal for Plant Demography, Communities, Evolution and Global Change
As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward
Consequences of Intraspecific Variation in Seed Dispersal for Plant Demography, Communities, Evolution and Global Change
As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward
Evolutionary ecology of masting: mechanisms, models, and climate change.
Many perennial plants show mast seeding, characterized by synchronous and highly variable reproduction across years. We propose a general model of masting, integrating proximate factors (environmental variation, weather cues, and resource budgets) with ultimate drivers (predator satiation and pollination efficiency). This general model shows how the relationships between masting and weather shape the diverse responses of species to climate warming, ranging from no change to lower interannual variation or reproductive failure. The role of environmental prediction as a masting driver is being reassessed; future studies need to estimate prediction accuracy and the benefits acquired. Since reproduction is central to plant adaptation to climate change, understanding how masting adapts to shifting environmental conditions is now a central question
Recommended from our members
Intrinsic and extrinsic drivers of intraspecific variation in seed dispersal are diverse and pervasive.
There is growing realization that intraspecific variation in seed dispersal can have important ecological and evolutionary consequences. However, we do not have a good understanding of the drivers or causes of intraspecific variation in dispersal, how strong an effect these drivers have, and how widespread they are across dispersal modes. As a first step to developing a better understanding, we present a broad, but not exhaustive, review of what is known about the drivers of intraspecific variation in seed dispersal, and what remains uncertain. We start by decomposing 'drivers of intraspecific variation in seed dispersal' into intrinsic drivers (i.e. variation in traits of individual plants) and extrinsic drivers (i.e. variation in ecological context). For intrinsic traits, we further decompose intraspecific variation into variation among individuals and variation of trait values within individuals. We then review our understanding of the major intrinsic and extrinsic drivers of intraspecific variation in seed dispersal, with an emphasis on variation among individuals. Crop size is the best-supported and best-understood intrinsic driver of variation across dispersal modes; overall, more seeds are dispersed as more seeds are produced, even in cases where per seed dispersal rates decline. Fruit/seed size is the second most widely studied intrinsic driver, and is also relevant to a broad range of seed dispersal modes. Remaining intrinsic drivers are poorly understood, and range from effects that are probably widespread, such as plant height, to drivers that are most likely sporadic, such as fruit or seed colour polymorphism. Primary extrinsic drivers of variation in seed dispersal include local environmental conditions and habitat structure. Finally, we present a selection of outstanding questions as a starting point to advance our understanding of individual variation in seed dispersal
Recommended from our members
Intrinsic and extrinsic drivers of intraspecific variation in seed dispersal are diverse and pervasive
© 2019 The Author(s). Published by Oxford University Press on behalf of the Annals of Botany Company. There is growing realization that intraspecific variation in seed dispersal can have important ecological and evolutionary consequences. However, we do not have a good understanding of the drivers or causes of intraspecific variation in dispersal, how strong an effect these drivers have, and how widespread they are across dispersal modes. As a first step to developing a better understanding, we present a broad, but not exhaustive, review of what is known about the drivers of intraspecific variation in seed dispersal, and what remains uncertain. We start by decomposing \u27drivers of intraspecific variation in seed dispersal\u27 into intrinsic drivers (i.e. variation in traits of individual plants) and extrinsic drivers (i.e. variation in ecological context). For intrinsic traits, we further decompose intraspecific variation into variation among individuals and variation of trait values within individuals. We then review our understanding of the major intrinsic and extrinsic drivers of intraspecific variation in seed dispersal, with an emphasis on variation among individuals. Crop size is the best-supported and best-understood intrinsic driver of variation across dispersal modes; overall, more seeds are dispersed as more seeds are produced, even in cases where per seed dispersal rates decline. Fruit/seed size is the second most widely studied intrinsic driver, and is also relevant to a broad range of seed dispersal modes. Remaining intrinsic drivers are poorly understood, and range from effects that are probably widespread, such as plant height, to drivers that are most likely sporadic, such as fruit or seed colour polymorphism. Primary extrinsic drivers of variation in seed dispersal include local environmental conditions and habitat structure. Finally, we present a selection of outstanding questions as a starting point to advance our understanding of individual variation in seed dispersal