19 research outputs found
Fast optimization of Multithreshold Entropy Linear Classifier
Multithreshold Entropy Linear Classifier (MELC) is a density based model
which searches for a linear projection maximizing the Cauchy-Schwarz Divergence
of dataset kernel density estimation. Despite its good empirical results, one
of its drawbacks is the optimization speed. In this paper we analyze how one
can speed it up through solving an approximate problem. We analyze two methods,
both similar to the approximate solutions of the Kernel Density Estimation
querying and provide adaptive schemes for selecting a crucial parameters based
on user-specified acceptable error. Furthermore we show how one can exploit
well known conjugate gradients and L-BFGS optimizers despite the fact that the
original optimization problem should be solved on the sphere. All above methods
and modifications are tested on 10 real life datasets from UCI repository to
confirm their practical usability.Comment: Presented at Theoretical Foundations of Machine Learning 2015
(http://tfml.gmum.net), final version published in Schedae Informaticae
Journa
PUVA Induced Bullous Pemphigoid in a Patient with Psoriasis
Letter to the editor - no abstract available</p
Ask the GRU: Multi-Task Learning for Deep Text Recommendations
In a variety of application domains the content to be recommended to users is
associated with text. This includes research papers, movies with associated
plot summaries, news articles, blog posts, etc. Recommendation approaches based
on latent factor models can be extended naturally to leverage text by employing
an explicit mapping from text to factors. This enables recommendations for new,
unseen content, and may generalize better, since the factors for all items are
produced by a compactly-parametrized model. Previous work has used topic models
or averages of word embeddings for this mapping. In this paper we present a
method leveraging deep recurrent neural networks to encode the text sequence
into a latent vector, specifically gated recurrent units (GRUs) trained
end-to-end on the collaborative filtering task. For the task of scientific
paper recommendation, this yields models with significantly higher accuracy. In
cold-start scenarios, we beat the previous state-of-the-art, all of which
ignore word order. Performance is further improved by multi-task learning,
where the text encoder network is trained for a combination of content
recommendation and item metadata prediction. This regularizes the collaborative
filtering model, ameliorating the problem of sparsity of the observed rating
matrix.Comment: 8 page
Inferring single-trial neural population dynamics using sequential auto-encoders
Neuroscience is experiencing a revolution in which simultaneous recording of thousands of neurons is revealing population dynamics that are not apparent from single-neuron responses. This structure is typically extracted from data averaged across many trials, but deeper understanding requires studying phenomena detected in single trials, which is challenging due to incomplete sampling of the neural population, trial-to-trial variability, and fluctuations in action potential timing. We introduce latent factor analysis via dynamical systems, a deep learning method to infer latent dynamics from single-trial neural spiking data. When applied to a variety of macaque and human motor cortical datasets, latent factor analysis via dynamical systems accurately predicts observed behavioral variables, extracts precise firing rate estimates of neural dynamics on single trials, infers perturbations to those dynamics that correlate with behavioral choices, and combines data from non-overlapping recording sessions spanning months to improve inference of underlying dynamics
Determination of an unknown input distribution matrix for non-linear discrete-time stochastic systems
The paper deals with the problem of estimating
an unknown input distribution matrix for non-linear discretetime
stochastic systems. In particular, it is shown how to
use the unscented Kalman filter as an unknown input filter.
Subsequently, an analysis of the impact of unknown input decoupling
on the fault detection is performed and a suitable fault
detection condition is developed. Based on the achieved results,
a numerical optimisation-based approach is proposed that can
be used to estimate the unknown input distribution matrix.
The final part of the paper presents an illustrative example
with an induction motor, which confirms the performance of
the proposed approach.Postprint (published version