32 research outputs found

    A universal mechanism generating clusters of differentiated loci during divergence-with-migration

    Get PDF
    Genome-wide patterns of genetic divergence reveal mechanisms of adaptation under gene flow. Empirical data show that divergence is mostly concentrated in narrow genomic regions. This pattern may arise because differentiated loci protect nearby mutations from gene flow, but recent theory suggests this mechanism is insufficient to explain the emergence of concentrated differentiation during biologically realistic timescales. Critically, earlier theory neglects an inevitable consequence of genetic drift: stochastic loss of local genomic divergence. Here we demonstrate that the rate of stochastic loss of weak local differentiation increases with recombination distance to a strongly diverged locus and, above a critical recombination distance, local loss is faster than local 'gain' of new differentiation. Under high migration and weak selection this critical recombination distance is much smaller than the total recombination distance of the genomic region under selection. Consequently, divergence between populations increases by net gain of new differentiation within the critical recombination distance, resulting in tightly-linked clusters of divergence. The mechanism responsible is the balance between stochastic loss and gain of weak local differentiation, a mechanism acting universally throughout the genome. Our results will help to explain empirical observations and lead to novel predictions regarding changes in genomic architectures during adaptive divergence. This article is protected by copyright. All rights reserved

    Adaptive colonization across a parasitism–mutualism gradient

    Get PDF
    Adaptive colonization is a process wherein a colonizing population exhibits an adaptive change in response to a novel environment, which may be critical to its establishment. To date, theoretical models of adaptive colonization have been based on single-species introductions. However, given their pervasiveness, symbionts will frequently be co-introduced with their hosts to novel areas. We present an individual-based model to investigate adaptive colonization by hosts and their symbionts across a parasite–mutualist continuum. The host must adapt in order to establish itself in the novel habitat, and the symbiont must adapt to track evolutionary change in the host. First, we classify the qualitative shifts in the outcome that can potentially be driven by non-neutral effects of the symbiont–host interaction into three main types: parasite-driven co-extinction, parasite release, and mutualistic facilitation. Second, we provide a detailed description of a specific example for each type of shift. Third, we disentangle how the interplay between symbiont transmissibility, host migration, and selection strength determines: (a) which type of shift is more likely to occur and (b) the size of the interaction effects necessary to produce it. Overall, we demonstrate the crucial role of host and symbiont dispersal scales in shaping the impacts of parasitism and mutualism on adaptive colonization

    Preface

    Get PDF
    ISSN:0962-8436ISSN:1471-2970ISSN:0080-462

    Assortative mating, sexual selection and their consequences for gene flow in Littorina

    Get PDF
    When divergent populations are connected by gene flow, the establishment of complete reproductive isolation usually requires the joint action of multiple barrier effects. One example where multiple barrier effects are coupled consists of a single trait that is under divergent natural selection and also mediates assortative mating. Such multiple‐effect traits can strongly reduce gene flow. However, there are few cases where patterns of assortative mating have been described quantitatively and their impact on gene flow has been determined. Two ecotypes of the coastal marine snail, Littorina saxatilis , occur in North Atlantic rocky‐shore habitats dominated by either crab predation or wave action. There is evidence for divergent natural selection acting on size, and size‐assortative mating has previously been documented. Here, we analyze the mating pattern in L. saxatilis with respect to size in intensively‐sampled transects across boundaries between the habitats. We show that the mating pattern is mostly conserved between ecotypes and that it generates both assortment and directional sexual selection for small male size. Using simulations, we show that the mating pattern can contribute to reproductive isolation between ecotypes but the barrier to gene flow is likely strengthened more by sexual selection than by assortment

    Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes

    Get PDF
    Both classical and recent studies suggest that chromosomal inversion polymorphisms are important in adaptation and speciation. However, biases in discovery and reporting of inversions make it difficult to assess their prevalence and biological importance. Here, we use an approach based on linkage disequilibrium among markers genotyped for samples collected across a transect between contrasting habitats to detect chromosomal rearrangements de novo. We report 17 polymorphic rearrangements in a single locality for the coastal marine snail, Littorina saxatilis. Patterns of diversity in the field and of recombination in controlled crosses provide strong evidence that at least the majority of these rearrangements are inversions. Most show clinal changes in frequency between habitats, suggestive of divergent selection, but only one appears to be fixed for different arrangements in the two habitats. Consistent with widespread evidence for balancing selection on inversion polymorphisms, we argue that a combination of heterosis and divergent selection can explain the observed patterns and should be considered in other systems spanning environmental gradients. This article is protected by copyright. All rights reserved

    How chromosomal inversions reorient the evolutionary process

    Get PDF
    Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach

    Gait Phases Recognition from Accelerations and Ground Reaction Forces: Application of Neural Networks

    No full text
    The goal of this study was to test the applicability of accelerometer as the sensor for assessment of the walking. We present here the comparison of gait phases detected from the data recorded by force sensing resistors mounted in the shoe insoles, non-processed acceleration and processed acceleration perpendicular to the direction of the foot. The gait phases in all three cases were detected by means of a neural network. The output from the neural network was the gait phase, while the inputs were data from the sensors. The results show that the errors were in the ranges: 30 ms (2.7%) – force sensors; 150 ms (13.6%) – nonprocessed acceleration, and 120 ms (11%) – processed acceleration data. This result suggests that it is possible to use the accelerometer as the gait phase detector, however, with the knowledge that the gait phases are time shifted for about 100 ms with respect the neural network predicted times

    Introduction to the theme issue ‘Species' ranges in the face of changing environments’

    No full text
    Understanding where, when and how species’ ranges will be modified is both a fundamental problem and essential to predicting how spatio-temporal environmental changes in abiotic and biotic factors impact biodiversity. Notably, different species may respond disparately to similar environmental changes: some species may overcome an environmental change only with difficulty or not at all, while other species may readily overcome the same change. Ranges may contract, expand or move. The drivers and consequences of this variability in species' responses remain puzzling. Importantly, changes in a species’ range creates feedbacks to the environmental conditions, populations and communities in its previous and current range, rendering population genetic, population dynamic and community processes inextricably linked. Understanding these links is critical in guiding biodiversity management and conservation efforts. This theme issue presents current thinking about the factors and mechanisms that limit and/or modify species' ranges. It also outlines different approaches to detect changes in species’ distributions, and illustrates cases of range modifications in several taxa. Overall, this theme issue highlights the urgency of understanding species' ranges but shows that we are only just beginning to disentangle the processes involved. One way forward is to unite ecology with evolutionary biology and empirical with modelling approaches
    corecore