2 research outputs found

    Low-energy effective representation of the Gutzwiller-projected BCS Hamiltonian close to half filling

    Full text link
    We investigate analytically a connection between the t-J model and the strongly correlated Bardeen-Cooper-Schrieffer (BCS) Hamiltonian, with the effect of strong electron correlations accounted by the Gutzwiller projection. We show that in the immediate vicinity of half filling the projected 2D BCS Hamiltonian with strong pairing develops an antiferromagnetically (AF) ordered ground state. This result explicitly demonstrates that antiferromagnetism in this model appears as a natural consequence of the strong Coulomb repulsion in a low doped regime. At moderate doping the ground state of the Gutzwiller-projected BCS Hamiltonian becomes qualitatively similar to Anderson's resonating valence bond state which is known to fit nicely the properties of the t-J model in this regime. These two properties taken together indicate that the projected BCS Hamiltonian captures the essential low-energy physics of the t-J model in the whole underdoped region

    Doped carrier formulation of the t-J model: the projection constraint and the effective Kondo-Heisenberg lattice representation

    Full text link
    We show that the recently proposed doped carrier Hamiltonian formulation of the t-J model should be complemented with the constraint that projects out the unphysical states. With this new important ingredient, the previously used and seemingly different spin-fermion representations of the t-J model are shown to be gauge related to each other. This new constraint can be treated in a controlled way close to half-filling suggesting that the doped carrier representation provides an appropriate theoretical framework to address the t-J model in this region. This constraint also suggests that the t-J model can be mapped onto a Kondo-Heisenberg lattice model. Such a mapping highlights important physical similarities between the quasi two-dimensional heavy fermions and the high-Tc_c superconductors. Finally we discuss the physical implications of our model representation relating in particular the small versus large Fermi surface crossover to the closure of the lattice spin gap.Comment: corrected and enlarged versio
    corecore