9 research outputs found

    Evaluating the utility of B/Ca ratios in planktic foraminifera as a proxy for the carbonate system : a case study of Globigerinoides ruber

    Get PDF
    This research was funded by NERC, Grant Number: NE/D00876X/2.B/Ca ratios in foraminifera have attracted considerable scientific attention as a proxy for past ocean carbonate system. However, the carbonate system controls on B/Ca ratios are not straightforward, with Δ[ CO32-] ([ CO32-]in situ - [ CO32-]at saturation) correlating best with B/Ca ratios in benthic foraminifera, rather than pH, B(OH)4-/HCO3-, or B(OH)4-/DIC (as a simple model of boron speciation in seawater and incorporation into CaCO3 would predict). Furthermore, culture experiments have shown that in planktic foraminifera properties such as salinity and [B]SW can have profound effects on B/Ca ratios beyond those predicted by simple partition coefficients. Here, we investigate the controls on B/Ca ratios in G. ruber via a combination of culture experiments and core-top measurements, and add to a growing body of evidence that suggests B/Ca ratios in symbiont-bearing foraminiferal carbonate are not a straightforward proxy for past seawater carbonate system conditions. We find that while B/Ca ratios in culture experiments covary with pH, in open ocean sediments this relationship is not seen. In fact, our B/Ca data correlate best with [ PO43-] (a previously undocumented association) and in most regions, salinity. These findings might suggest a precipitation rate or crystallographic control on boron incorporation into foraminiferal calcite. Regardless, our results underscore the need for caution when attempting to interpret B/Ca records in terms of the ocean carbonate system, at the very least in the case of mixed-layer planktic foraminifera.Publisher PDFPeer reviewe

    Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation

    No full text
    Atmospheric CO2 fluctuations over glacial-interglacial cycles remain a major challenge to our understanding of the carbon cycle and the climate system. Leading hypotheses put forward to explain glacial-interglacial atmospheric CO2 variations invoke changes in deep-ocean carbon storage, probably modulated by processes in the Southern Ocean, where much of the deep ocean is ventilated. A central aspect of such models is that, during deglaciations, an isolated glacial deep-ocean carbon reservoir is reconnected with the atmosphere, driving the atmospheric CO2 rise observed in ice-core records. However, direct documentation of changes in surface ocean carbon content and the associated transfer of carbon to the atmosphere during deglaciations has been hindered by the lack of proxy reconstructions that unambiguously reflect the oceanic carbonate system. Radiocarbon activity tracks changes in ocean ventilation, but not in ocean carbon content, whereas proxies that record increased deglacial upwelling do not constrain the proportion of upwelled carbon that is degassed relative to that which is taken up by the biological pump. Here we apply the boron isotope pH proxy in planktic foraminifera to two sediment cores from the sub-Antarctic Atlantic and the eastern equatorial Pacific as a more direct tracer of oceanic CO2 outgassing. We show that surface waters at both locations, which partly derive from deep water upwelled in the Southern Ocean, became a significant source of carbon to the atmosphere during the last deglaciation, when the concentration of atmospheric CO2 was increasing. This oceanic CO2 outgassing supports the view that the ventilation of a deep-ocean carbon reservoir in the Southern Ocean had a key role in the deglacial CO2 rise, although our results allow for the possibility that processes operating in other regions may also have been important for the glacial-interglacial ocean-atmosphere exchange of carbon

    Refining Boron Isotopic Measurements of Silicate Samples by Multi-Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS)

    No full text
    Solution MC-ICP-MS is an established technique for high precision boron isotope measurement results (δ11BSRM 951) in carbonates, yet its application to silicate rocks has been limited. Impediments include volatilisation during silicate dissolution and contamination during chemical purification. To address this, we present a low-blank sample preparation procedure that couples hydrofluoric acid-digestion and low-temperature evaporation (mannitol-free), to an established MC-ICP-MS measurement procedure following chemical purification using B-specific Amberlite IRA 743 resin. We obtain accurate δ11BSRM 951 values (intermediate precision ±0.2‰) for boric acid (BAM ERM-AE121 19.65 ± 0.14‰) and carbonate (NIST RM 8301 (Coral) 24.24 ± 0.11‰) reference materials. For silicate reference materials covering mafic to felsic compositions we obtain δ11BSRM 951 with intermediate precision < ±0.6‰ (2s), namely JB-2 6.9 ± 0.4‰; IAEA-B-5 -6.0 ± 0.6‰; IAEA-B-6 -3.9 ± 0.5‰ (2s). Furthermore, splits of these same reference materials were processed by an alternative fusion and purification procedure. We find excellent agreement between δ11BSRM 951 measurement results by MC-ICP-MS of the reference materials using both sample processing techniques. These measurement results show that our sample processing and MC-ICP-MS methods provide consistent δ11BSRM 951 values for low B-mass fraction samples. We present new data from Mid Ocean Ridge Basalt (MORB) glass, documenting a range in δ11BSRM 951 from -5.6 ± 0.3‰ to -8.8 ± 0.5‰ (2s), implying some upper mantle δ11BSRM 951 heterogeneity

    Interactions between deep formation fluid and gas hydrate dynamics inferred from pore fluid geochemistry at active pockmarks of the Vestnesa Ridge, west Svalbard margin

    Get PDF
    Cruise MSM57-1/-2 was funded by the German Research Foundation ( DFG ), the Research Center/Excellence Cluster “The Ocean in the Earth System” at MARUM–Center for Marine and Environmental Sciences, University of Bremen and funds from CAGE. This work is partly supported by the Research Council of Norway (RCN) through Petromaks2-NORCRUST (project number 255150 ) and the Centre of Excellence funding scheme for CAGE (project number 223259 ). APF’s contribution was part of the SEAMSTRESS project supported by starting grants from the Tromsø Research Foundation and the Research Council of Norway (grant nr. 2878659 ).Seafloor seepage sites along the Vestnesa Ridge off west-Svalbard have been, for decades, a natural laboratory for the studies of fluid flow and gas hydrate dynamics along passive continental margins. The lack of ground truth evidence for fluid composition and gas hydrate abundance deep in the sediment sequence however prohibits us from further assessing the current model of pockmark evolution from the region. A MARUM-MeBo 70 drilling cruise in 2016 aims to advance our understanding of the system by recovering sediments tens of meters below seafloor from two active pockmarks along Vestnesa Ridge. We report pore fluid composition data focusing on dissolved chloride, stable isotopes of water (δ18O and δD), and the isotopic composition of dissolved boron (δ11B). From one of the seepage sites, we detect a saline formation water with two layers where gas hydrates were recovered. This saline formation pore fluid is characterized by elevated chloride concentrations (up to 616 mM), high B/Cl ratios (9 × 10−4 mol/mol), high δ18O and δD isotopic signatures (+0.6‰ and +3.8‰, respectively) and low δ11B signatures (+35.0‰), which collectively hint to a high temperature modification at great depths. Based on the dissolved chloride concentration profiles, we estimated up to 47% of pore space occupied by gas hydrate in the sediments shallower than 11.5 mbsf. The observation of bubble fabric in the recovered gas hydrates suggests formation during past periods of intensive gaseous methane seepage. The presence of these gas hydrates without associated positive anomalies in dissolved chloride concentrations however suggests that the decomposition of gas hydrate is as fast as its formation. Such a state of gas hydrates can be attributed to a relatively low methane supply transported by the saline formation water at present. Our findings based on pore fluid composition corroborate previous inferences along Vestnesa Ridge that fluids sustaining seepage have migrated from great depths and that the variable gaseous and aqueous phases through the gas hydrate stability zone control the distributions of authigenic carbonates and gas hydrates. Publisher PDFPeer reviewe

    Cenozoic evolution of deep ocean temperature from clumped isotope thermometry

    No full text
    Characterizing past climate states is crucial for understanding the future consequences of ongoing greenhouse gas emissions. Here, we revisit the benchmark time series for deep ocean temperature across the past 65 million years using clumped isotope thermometry. Our temperature estimates from the deep Atlantic Ocean are overall much warmer compared with oxygen isotope–based reconstructions, highlighting the likely influence of changes in deep ocean pH and/or seawater oxygen isotope composition on classical oxygen isotope records of the Cenozoic. In addition, our data reveal previously unrecognized large swings in deep ocean temperature during early Eocene acute greenhouse warmth. Our results call for a reassessment of the Cenozoic history of ocean temperatures to achieve a more accurate understanding of the nature of climatic responses to tectonic events and variable greenhouse forcing

    MATLAB Program Developed for CO2 System Calculations. ORNL/CDIAC-105b.

    No full text
    This is a MATLAB-version of the original CO2SYS for DOS. CO2SYS calculates and returns a detailed state of the carbonate system of oceanographic water samples, if supplied with enough input. Use this function as you would use any other Matlab inline funtion, i.e., a=func(b,c). For extended details on using the function, please refer to the enclosed help by typing "help CO2SYS" in Matlab. For details on the internal workings of the function, please refer to the original publication of Lewis and Wallace at http://cdiac.ornl.gov/oceans/co2rprt.html. Note that this function allows for the input of vectors. This means that you can calculate many samples at once. Each of these samples can be processed with individual salinities, temperatures, pH scales, dissociation constants, etc

    Cenozoic evolution of deep ocean temperature from clumped isotope thermometry

    No full text
    Characterizing past climate states is crucial for understanding the future consequences of ongoing greenhouse gas emissions. Here, we revisit the benchmark time series for deep ocean temperature across the past 65 million years using clumped isotope thermometry. Our temperature estimates from the deep Atlantic Ocean are overall much warmer compared with oxygen isotope–based reconstructions, highlighting the likely influence of changes in deep ocean pH and/or seawater oxygen isotope composition on classical oxygen isotope records of the Cenozoic. In addition, our data reveal previously unrecognized large swings in deep ocean temperature during early Eocene acute greenhouse warmth. Our results call for a reassessment of the Cenozoic history of ocean temperatures to achieve a more accurate understanding of the nature of climatic responses to tectonic events and variable greenhouse forcing

    Cenozoic evolution of deep ocean temperature from clumped isotope thermometry

    Get PDF
    Characterizing past climate states is crucial for understanding the future consequences of ongoing greenhouse gas emissions. Here, we revisit the benchmark time series for deep ocean temperature across the past 65 million years using clumped isotope thermometry. Our temperature estimates from the deep Atlantic Ocean are overall much warmer compared with oxygen isotope–based reconstructions, highlighting the likely influence of changes in deep ocean pH and/or seawater oxygen isotope composition on classical oxygen isotope records of the Cenozoic. In addition, our data reveal previously unrecognized large swings in deep ocean temperature during early Eocene acute greenhouse warmth. Our results call for a reassessment of the Cenozoic history of ocean temperatures to achieve a more accurate understanding of the nature of climatic responses to tectonic events and variable greenhouse forcing
    corecore