175 research outputs found

    Electronic and Magnetic Properties of Febr2

    Full text link
    Electronic and magnetic (e-m) properties of FeBr2 have been surprisingly well described as originating from the Fe2+ ions and their fine electronic structure. The fine electronic structure have been evaluated taking into account the spin-orbit (s-o) coupling, crystal-field and inter-site spin-dependent interactions. The required magnetic doublet ground state with an excited singlet at D=2.8 meV results from the trigonal distortion. This effect of the trigonal distortion and a large magnetic moment of iron, of 4.4 mB, can be theoretically derived provided the s-o coupling is correctly taking into account. The obtained good agreement with experimental data indicates on extremaly strong correlations of the six 3d electrons in the Fe2+ ion yielding their full localization and the insulating state. These calculations show that for the meaningful analysis of e-m properties of FeBr2 the spin-orbit coupling is essentially important and that the orbital moment (0.74 mB) is largely unquenched (by the off-cubic trigonal distortion in the presence of the spin-orbit coupling).Comment: 11 pages in RevTex, 5 figure

    Calculation of magnetic anisotropy energy in SmCo5

    Full text link
    SmCo5 is an important hard magnetic material, due to its large magnetic anisotropy energy (MAE). We have studied the magnetic properties of SmCo5 using density functional theory (DFT) calculations where the Sm f-bands, which are difficult to include in DFT calculations, have been treated within the LDA+U formalism. The large MAE comes mostly from the Sm f-shell anisotropy, stemming from an interplay between the crystal field and the spin-orbit coupling. We found that both are of similar strengths, unlike some other Sm compounds, leading to a partial quenching of the orbital moment (f-states cannot be described as either pure lattice harmonics or pure complex harmonics), an optimal situation for enhanced MAE. A smaller portion of the MAE can be associated with the Co-d band anisotropy, related to the peak in the density of states at the Fermi energy. Our result for the MAE of SmCo5, 21.6 meV/f.u., agrees reasonably with the experimental value of 13-16 meV/f.u., and the calculated magnetic moment (including the orbital component) of 9.4 mu_B agrees with the experimental value of 8.9 mu_B.Comment: Submitted to Phys. Rev.

    The Grizzly, April 12, 1985

    Get PDF
    Construction of Three Athletic Fields is Underway • Dumb Jock Image Unfair Stereotype, Study Says • Campus Shows Concern for African Hunger Problem • Concert Review: Pink Floyd\u27s Leader Provides Powerful Performance • Bear Batters Face Tough Times • Talent Show Moments • Girl\u27s Lacrosse Wins Five, Drops Two • Men\u27s Track Places First, Second in Two Meets • Intramural Basketball Season Endshttps://digitalcommons.ursinus.edu/grizzlynews/1139/thumbnail.jp

    Enhancement of Cardiac Store Operated Calcium Entry (SOCE) within Novel Intercalated Disk Microdomains in Arrhythmic Disease

    Get PDF
    Store-operated Ca2+ entry (SOCE), a major Ca2+ signaling mechanism in non-myocyte cells, has recently emerged as a component of Ca2+ signaling in cardiac myocytes. Though it has been reported to play a role in cardiac arrhythmias and to be upregulated in cardiac disease, little is known about the fundamental properties of cardiac SOCE, its structural underpinnings or effector targets. An even greater question is how SOCE interacts with canonical excitation-contraction coupling (ECC). We undertook a multiscale structural and functional investigation of SOCE in cardiac myocytes from healthy mice (wild type; WT) and from a genetic murine model of arrhythmic disease (catecholaminergic ventricular tachycardia; CPVT). Here we provide the first demonstration of local, transient Ca2+ entry (LoCE) events, which comprise cardiac SOCE. Although infrequent in WT myocytes, LoCEs occurred with greater frequency and amplitude in CPVT myocytes. CPVT myocytes also evidenced characteristic arrhythmogenic spontaneous Ca2+ waves under cholinergic stress, which were effectively prevented by SOCE inhibition. In a surprising finding, we report that both LoCEs and their underlying protein machinery are concentrated at the intercalated disk (ID). Therefore, localization of cardiac SOCE in the ID compartment has important implications for SOCE-mediated signaling, arrhythmogenesis and intercellular mechanical and electrical coupling in health and disease

    Can we predict who will benefit from the deep inspiration breath hold (DIBH) technique for breast cancer irradiation?

    Get PDF
    Background: The objective was to explore the clinical use of an “in-house” prototype developed to monitor respiratory motion to implement the deep inspiration breath hold technique (DIBH), compare dosimetric differences, and assess whether simple anatomic metrics measured on free breathing (FB) computed tomography scan (CT) can help in selecting patients that would benefit the most from the technique. Materials and methods: A prospective study was conducted on patients with left breast cancer with an indication of adjuvant radiotherapy for breast only. Treatment simulation consisted of four series of CTs: the first during FB and three in DIBH to assess the reproducibility and stability of apnea. Contouring was based on the RTOG atlas, and planning was done in both FB and DIBH. Dosimetric and geometric parameters were assessed and compared between FB and DIBH. Results: From June 2020 to December 2021, 30 patients with left breast cancer were recruited. Overall, the DIBH technique presented a mean dose reduction of 24% in the heart and 30% in the left anterior descendent coronary artery (LAD) (p < 0.05). The only geometric parameter correlated to a 30% dose reduction in the mean heart dose and LAD doses was the anterolateral distance from the heart to the chest wall of at least 1.5 cm measured on FB (p < 0.0001). Conclusion: The prototype enabled the use of the DIBH technique with dose reductions in the heart and LAD. The benefit of the DIBH technique can be predicted on FB CT by measuring the distance between the heart and chest wall at the treatment isocenter

    Coordinations between gene modules control the operation of plant amino acid metabolic networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Being sessile organisms, plants should adjust their metabolism to dynamic changes in their environment. Such adjustments need particular coordination in branched metabolic networks in which a given metabolite can be converted into multiple other metabolites via different enzymatic chains. In the present report, we developed a novel "Gene Coordination" bioinformatics approach and use it to elucidate adjustable transcriptional interactions of two branched amino acid metabolic networks in plants in response to environmental stresses, using publicly available microarray results.</p> <p>Results</p> <p>Using our "Gene Coordination" approach, we have identified in Arabidopsis plants two oppositely regulated groups of "highly coordinated" genes within the branched Asp-family network of Arabidopsis plants, which metabolizes the amino acids Lys, Met, Thr, Ile and Gly, as well as a single group of "highly coordinated" genes within the branched aromatic amino acid metabolic network, which metabolizes the amino acids Trp, Phe and Tyr. These genes possess highly coordinated adjustable negative and positive expression responses to various stress cues, which apparently regulate adjustable metabolic shifts between competing branches of these networks. We also provide evidence implying that these highly coordinated genes are central to impose intra- and inter-network interactions between the Asp-family and aromatic amino acid metabolic networks as well as differential system interactions with other growth promoting and stress-associated genome-wide genes.</p> <p>Conclusion</p> <p>Our novel Gene Coordination elucidates that branched amino acid metabolic networks in plants are regulated by specific groups of highly coordinated genes that possess adjustable intra-network, inter-network and genome-wide transcriptional interactions. We also hypothesize that such transcriptional interactions enable regulatory metabolic adjustments needed for adaptation to the stresses.</p
    • …
    corecore