57 research outputs found

    Calculation of magnetic anisotropy energy in SmCo5

    Full text link
    SmCo5 is an important hard magnetic material, due to its large magnetic anisotropy energy (MAE). We have studied the magnetic properties of SmCo5 using density functional theory (DFT) calculations where the Sm f-bands, which are difficult to include in DFT calculations, have been treated within the LDA+U formalism. The large MAE comes mostly from the Sm f-shell anisotropy, stemming from an interplay between the crystal field and the spin-orbit coupling. We found that both are of similar strengths, unlike some other Sm compounds, leading to a partial quenching of the orbital moment (f-states cannot be described as either pure lattice harmonics or pure complex harmonics), an optimal situation for enhanced MAE. A smaller portion of the MAE can be associated with the Co-d band anisotropy, related to the peak in the density of states at the Fermi energy. Our result for the MAE of SmCo5, 21.6 meV/f.u., agrees reasonably with the experimental value of 13-16 meV/f.u., and the calculated magnetic moment (including the orbital component) of 9.4 mu_B agrees with the experimental value of 8.9 mu_B.Comment: Submitted to Phys. Rev.

    Enhancement of Cardiac Store Operated Calcium Entry (SOCE) within Novel Intercalated Disk Microdomains in Arrhythmic Disease

    Get PDF
    Store-operated Ca2+ entry (SOCE), a major Ca2+ signaling mechanism in non-myocyte cells, has recently emerged as a component of Ca2+ signaling in cardiac myocytes. Though it has been reported to play a role in cardiac arrhythmias and to be upregulated in cardiac disease, little is known about the fundamental properties of cardiac SOCE, its structural underpinnings or effector targets. An even greater question is how SOCE interacts with canonical excitation-contraction coupling (ECC). We undertook a multiscale structural and functional investigation of SOCE in cardiac myocytes from healthy mice (wild type; WT) and from a genetic murine model of arrhythmic disease (catecholaminergic ventricular tachycardia; CPVT). Here we provide the first demonstration of local, transient Ca2+ entry (LoCE) events, which comprise cardiac SOCE. Although infrequent in WT myocytes, LoCEs occurred with greater frequency and amplitude in CPVT myocytes. CPVT myocytes also evidenced characteristic arrhythmogenic spontaneous Ca2+ waves under cholinergic stress, which were effectively prevented by SOCE inhibition. In a surprising finding, we report that both LoCEs and their underlying protein machinery are concentrated at the intercalated disk (ID). Therefore, localization of cardiac SOCE in the ID compartment has important implications for SOCE-mediated signaling, arrhythmogenesis and intercellular mechanical and electrical coupling in health and disease

    Neuronal Na+ channel blockade suppresses arrhythmogenic diastolic Ca2+ release

    No full text
    Aims Sudden death resulting from cardiac arrhythmias is the most common consequence of cardiac disease. Certain arrhythmias caused by abnormal impulse formation including catecholaminergic polymorphic ventricular tachycardia (CPVT) are associated with delayed afterdepolarizations resulting from diastolic Ca2+ release (DCR) from the sarcoplasmic reticulum (SR). Despite high response of CPVT to agents directly affecting Ca2+ cycling, the incidence of refractory cases is still significant. Surprisingly, these patients often respond to treatment with Na+ channel blockers. However, the relationship between Na+ influx and disturbances in Ca2+ handling immediately preceding arrhythmias in CPVT remains poorly understood and is the object of this study. Methods and results We performed optical Ca2+ and membrane potential imaging in ventricular myocytes and intact cardiac muscles as well as surface ECGs on a CPVT mouse model with a mutation in cardiac calsequestrin. We demonstrate that a subpopulation of Na+ channels (neuronal Na+ channels; nNav) colocalize with ryanodine receptor Ca2+ release channels (RyR2). Disruption of the crosstalk between nNav and RyR2 by nNav blockade with riluzole reduced and also desynchronized DCR in isolated cardiomyocytes and in intact cardiac tissue. Such desynchronization of DCR on cellular and tissue level translated into decreased arrhythmias in CPVT mice. Conclusions Thus, our study offers the first evidence that nNav contribute to arrhythmogenic DCR, thereby providing a conceptual basis for mechanism-based antiarrhythmic therapy. © 2014 Published on behalf of the European Society of Cardiology

    Tetrodotoxin-Sensitive Neuronal-Type Na+ Channels: A Novel and Druggable Target for Prevention of Atrial Fibrillation

    No full text
    Background Atrial fibrillation (AF) is a comorbidity associated with heart failure and catecholaminergic polymorphic ventricular tachycardia. Despite the Ca2+-dependent nature of both of these pathologies, AF often responds to Na+ channel blockers. We investigated how targeting interdependent Na+/Ca2+ dysregulation might prevent focal activity and control AF. Methods and Results We studied AF in 2 models of Ca2+-dependent disorders, a murine model of catecholaminergic polymorphic ventricular tachycardia and a canine model of chronic tachypacing-induced heart failure. Imaging studies revealed close association of neuronal-type Na+ channels (nNav) with ryanodine receptors and Na+/Ca2+ exchanger. Catecholamine stimulation induced cellular and in vivo atrial arrhythmias in wild-type mice only during pharmacological augmentation of nNav activity. In contrast, catecholamine stimulation alone was sufficient to elicit atrial arrhythmias in catecholaminergic polymorphic ventricular tachycardia mice and failing canine atria. Importantly, these were abolished by acute nNav inhibition (tetrodotoxin or riluzole) implicating Na+/Ca2+ dysregulation in AF. These findings were then tested in 2 nonrandomized retrospective cohorts: an amyotrophic lateral sclerosis clinic and an academic medical center. Riluzole-treated patients adjusted for baseline characteristics evidenced significantly lower incidence of arrhythmias including new-onset AF, supporting the preclinical results. Conclusions These data suggest that nNaVs mediate Na+-Ca2+ crosstalk within nanodomains containing Ca2+ release machinery and, thereby, contribute to AF triggers. Disruption of this mechanism by nNav inhibition can effectively prevent AF arising from diverse causes
    • …
    corecore