89 research outputs found

    Microcanonical studies concerning the recent experimental evaluations of the nuclear caloric curve

    Get PDF
    The microcanonical multifragmentation model from [Al. H. Raduta and Ad. R. Raduta, Phys. Rev. C 55, 1344 (1997); 56, 2059 (1997); 59, 323 (1999)] is refined and improved by taking into account the experimental discrete levels for fragments with A≤6A \le 6 and by including the stage of sequential decay of the primary excited fragments. The caloric curve is reevaluated and the heat capacity at constant volume curve is represented as a function of excitation energy and temperature. The sequence of equilibrated sources formed in the reactions studied by the ALADIN group (197^{197}Au+197^{197}Au at 600, 800 and 1000 MeV/nucleon bombarding energy) is deduced by fitting simultaneously the model predicted mean multiplicity of intermediate mass fragments (MIMFM_{IMF}) and charge asymmetry of the two largest fragments (a12a_{12}) versus bound charge (ZboundZ_{bound}) on the corresponding experimental data. Calculated HeLi isotopic temperature curves as a function of the bound charge are compared with the experimentally deduced ones.Comment: 13 pages, 4 figure

    Collective dipole excitations in sodium clusters

    Full text link
    Some properties of small and medium sodium clusters are described within the RPA approach using a projected spherical single particle basis. The oscillator strengths calculated with a Schiff-like dipole transition operator and folded with Lorentzian functions are used to calculate the photoabsorbtion cross section spectra. The results are further employed to establish the dependence of the plasmon frequency on the number of cluster components. Static electric polarizabilities of the clusters excited in a RPA dipole state are also calculated. Comparison of our results with the corresponding experimental data show an overall good agreement.Comment: 23 pages, 5 figure

    Simultaneous description of four positive and four negative parity bands

    Get PDF
    The extended coherent state model is further extended in order to describe two dipole bands of different parities. The formalism provides a consistent description of eight rotational bands. A unified description for spherical, transitional and deformed nuclei is possible. Projecting out the angular momentum and parity from a sole state, the KĎ€=1+K^{\pi}=1^+ band acquires a magnetic character, while the electric properties prevail for the other band. Signatures for a static octupole deformation in some states of the dipole bands are pointed out. Some properties which distinguish between the dipole band states and states of the same parity but belonging to other bands are mentioned. Interesting features concerning the decay properties of the two bands are found. Numerical applications are made for 158^{158}Gd, 172^{172}Yb, 228,232^{228,232}Th, 226^{226}Ra, 238^{238}U and 238^{238}Pu, and the results are compared with the available data.Comment: 36 pages, 13 figures, 12 table

    New features of collective motion of intrinsic degrees of freedom. Toward a possible way to classify the intrinsic states

    Full text link
    Three exactly solvable Hamiltonians of complex structure are studied in the framework of a semi-classical approach. The quantized trajectories for intrinsic coordinates correspond to energies which may be classified in collective bands. For two of the chosen Hamiltonians the symmetry SU2xSU2 is the appropriate one to classify the eigenvalues in the laboratory frame. Connections of results presented here with the molecular spectrum and Moszkowski model are pointed out. The present approach suggests that the intrinsic states, which in standard formalisms are heading rotational bands, are forming themselves "rotational" bands, the rotations being performed in a fictious boson space.Comment: 33 pages, 9 figure

    Searching for statistical equilibrium in a dynamical multifragmentation path

    Full text link
    A method for identifying statistical equilibrium stages in dynamical multifragmentation paths as provided by transport models, already successfully tested for for the reaction ^{129}Xe+^{119}Sn at 32 MeV/u is applied here to a higher energy reaction, ^{129}Xe+^{119}Sn at 50 MeV/u. The method evaluates equilibrium from the point of view of the microcanonical multifragmentation model (MMM) and reactions are simulated by means of the stochastic mean field model (SMF). A unique solution, corresponding to the maximum population of the system phase space, was identified suggesting that a huge part of the available phase space is occupied even in the case of the 50 MeV/u reaction, in presence of a considerable amount of radial collective flow. The specific equilibration time and volume are identified and differences between the two systems are discussed.Comment: 7 pages, 10 figures, accepted for publication in Physical Review

    Statistical analysis of a dynamical multifragmentation path

    Full text link
    A microcanonical multifragmentation model (MMM) is used for investigating whether equilibration really occurs in the dynamical evolution of two heavy ion collisions simulated via a stochastic mean field approach (SMF). The standard deviation function between the dynamically obtained freeze-out fragment distributions corresponding to the reaction 129^{129}Xe+119^{119}Sn at 32 MeV/u and the MMM ones corresponding to a wide range of mass, excitation energy, freeze-out volume and nuclear level density cut-off parameter shows a unique minimum. A distinct statistically equilibrated stage is identified in the dynamical evolution of the system.Comment: 5 pages, 3 figure
    • …
    corecore