2,013 research outputs found
USSR Space Life Sciences Digest, issue 1
The first issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 49 Soviet periodical articles in 19 areas of aerospace medicine and space biology, published in Russian during the first quarter of 1985. Translated introductions and table of contents for nine Russian books on topics related to NASA's life science concerns are presented. Areas covered include: botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, endocrinology, gastrointestinal system, genetics, group dynamics, habitability and environmental effects, health and medicine, hematology, immunology, life support systems, man machine systems, metabolism, musculoskeletal system, neurophysiology, perception, personnel selection, psychology, radiobiology, reproductive system, and space biology. This issue concentrates on aerospace medicine and space biology
Predictions for Impurity-Induced Tc Suppression in the High-Temperature Superconductors
We address the question of whether anisotropic superconductivity is
compatible with the evidently weak sensitivity of the critical temperature Tc
to sample quality in the high-Tc copper oxides. We examine this issue
quantitatively by solving the strong-coupling Eliashberg equations numerically
as well as analytically for s-wave impurity scattering within the second Born
approximation. For pairing interactions with a characteristically low energy
scale, we find an approximately universal dependence of the d-wave
superconducting transition temperature on the planar residual resistivity which
is independent of the details of the microscopic pairing. These results, in
conjunction with future systematic experiments, should help elucidate the
symmetry of the order parameter in the cuprates.Comment: 13 pages, 4 figures upon request, revtex version
USSR Space Life Sciences Digest, issue 6
This is the sixth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include a table of Soviet EVAs and information about English translations of Soviet materials available to readers. The topics covered in this issue have been identified as relevant to 26 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, health and medical treatment, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism., microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, reproductive biology, and space medicine
USSR Space Life Sciences Digest, issue 3
This is the third issue of NASA's USSR Space Life Sciences Digest. Abstracts are included for 46 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the second third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for seven Russian books on six topics related to NASA's life science concerns are presented. Areas covered are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, endocrinology, exobiology, gravitational biology, habitability and environmental effects, health and medical treatment, immunology, life support systems, metabolism, microbiology, musculoskeletal system; neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space physiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given
Cloud Chamber: A Performance with Real Time Two-Way Interaction between Subatomic Particles and Violinist
âCloud Chamberâ - a composition by Alexis Kirke, Antonino Chiaramonte, and Anna Troisi - is a live performance in which the invisible quantum world becomes visible as a violinist and subatomic particle tracks interact together. An electronic instrument was developed which can be âplayedâ live by radioactive atomic particles. Electronic circuitry was developed enabling a violin to create a physical force field that directly affects the ions generated by cosmic radiation particles. This enabled the violinist and the ions to influence each other musically in real time. A glass cloud chamber was used onstage to make radioactivity visible in bright white tracks moving within, with the tracks projected onto a large screen
Exchange Instabilities in Semiconductor Double Quantum Well Systems
We consider various exchange-driven electronic instabilities in semiconductor
double-layer systems in the absence of any external magnetic field. We
establish that there is no exchange-driven bilayer to monolayer charge transfer
instability in the double-layer systems. We show that, within the unrestricted
Hartree-Fock approximation, the low density stable phase (even in the absence
of any interlayer tunneling) is a quantum ``pseudospin rotated'' spontaneous
interlayer phase coherent spin-polarized symmetric state rather than the
classical Ising-like charge-transfer phase. The U(1) symmetry of the double
quantum well system is broken spontaneously at this low density quantum phase
transition, and the layer density develops quantum fluctuations even in the
absence of any interlayer tunneling. The phase diagram for the double quantum
well system is calculated in the carrier density--layer separation space, and
the possibility of experimentally observing various quantum phases is
discussed. The situation in the presence of an external electric field is
investigated in some detail using the
spin-polarized-local-density-approximation-based self-consistent technique and
good agreement with existing experimental results is obtained.Comment: 24 pages, figures included. Also available at
http://www-cmg.physics.umd.edu/~lzheng/preprint/ct.uu/ . Revised final
version to appear in PR
The Effect of Surfaces on the Tunneling Density of States of an Anisotropically Paired Superconductor
We present calculations of the tunneling density of states in an
anisotropically paired superconductor for two different sample geometries: a
semi-infinite system with a single specular wall, and a slab of finite
thickness and infinite lateral extent. In both cases we are interested in the
effects of surface pair breaking on the tunneling spectrum. We take the stable
bulk phase to be of symmetry. Our calculations are performed
within two different band structure environments: an isotropic cylindrical
Fermi surface with a bulk order parameter of the form ,
and a nontrivial tight-binding Fermi surface with the order parameter structure
coming from an anti-ferromagnetic spin-fluctuation model. In each case we find
additional structures in the energy spectrum coming from the surface layer.
These structures are sensitive to the orientation of the surface with respect
to the crystal lattice, and have their origins in the detailed form of the
momentum and spatial dependence of the order parameter. By means of tunneling
spectroscopy, one can obtain information on both the anisotropy of the energy
gap, |\Delta(\p)|, as well as on the phase of the order parameter,
\Delta(\p) = |\Delta(\p)|e^{i\varphi(\p)}.Comment: 14 pages of revtex text with 11 compressed and encoded figures. To
appear in J. Low Temp. Phys., December, 199
Theory of the c-Axis Penetration Depth in the Cuprates
Recent measurements of the London penetration depth tensor in the cuprates
find a weak temperature dependence along the c-direction which is seemingly
inconsistent with evidence for d-wave pairing deduced from in-plane
measurements. We demonstrate in this paper that these disparate results are not
in contradiction, but can be explained within a theory based on incoherent
quasiparticle hopping between the CuO2 layers. By relating the calculated
temperature dependence of the penetration depth \lambda_c(T) to the c-axis
resistivity, we show how the measured ratio \lambda_c^2(0) / \lambda_c^2(T) can
provide insight into the behavior of c-axis transport below Tc and the related
issue of ``confinement.''Comment: 4 pages, REVTEX with psfig, 3 PostScript figures included in
compressed for
Disorder Effects in Superconductors with Anisotropic Pairing: From Cooper Pairs to Compact Bosons
In the weak coupling BCS-approximation normal impurities do not influence
superconducting T_{c} in significant manner in case of isotropic s-wave
pairing. However, in case of d-wave pairing these are strongly pair-breaking.
This fact is in rather strong contradiction with many experiments on disordered
high-T_{c} superconductors assuming the d-wave nature of pairing in these
systems. With the growth of electron attraction within the Cooper pair the
system smoothly crosses over from BCS-pairs to compact Boson picture of
superconductivity. As pairing strength grows and pairs become compact
significant deviations from universal Abrikosov-Gorkov dependence of T_{c} on
disorder appear in case of d-wave pairing with superconducting state becoming
more stable than in the weak coupling case. As high-T_{c} superconductors are
actually in the intermediate region with Cooper pairs size of the order of few
interatomic lengths, these results can explain the relative stability of d-wave
pairing under rather strong disordering.Comment: 8 pages, 3 figures, RevTeX 3.0, 1 Postscript figure attached,
submitted to JETP Letter
- âŠ