42 research outputs found

    Vainshtein mechanism in Gauss-Bonnet gravity and Galileon aether

    Full text link
    We derive field equations of Gauss-Bonnet gravity in 4 dimensions after dimensional reduction of the action and demonstrate that in this scenario Vainshtein mechanism operates in the flat spherically symmetric background. We show that inside this Vainshtein sphere the fifth force is negligibly small compared to the gravitational force. We also investigate stability of the spherically symmetric solution, clarify the vocabulary used in the literature about the hyperbolicity of the equation and the ghost-Laplacian stability conditions. We find superluminal behavior of the perturbation of the field in the radial direction. However, because of the presence of the non linear terms, the structure of the space-time is modified and as a result the field does not propagate in the Minkowski metric but rather in an "aether" composed by the scalar field π(r)\pi(r). We thereby demonstrate that the superluminal behavior does not create time paradoxes thank to the absence of Causal Closed Curves. We also derive the stability conditions for Friedmann Universe in context with scalar and tensor perturbations.Comment: 9 pages, 5 figures, references added, more details on the cosmological analysis included, results and conclusions unchanged, final version to appear in PR

    Chameleon dark energy models with characteristic signatures

    Full text link
    In chameleon dark energy models, local gravity constraints tend to rule out parameters in which observable cosmological signatures can be found. We study viable chameleon potentials consistent with a number of recent observational and experimental bounds. A novel chameleon field potential, motivated by f(R) gravity, is constructed where observable cosmological signatures are present both at the background evolution and in the growth-rate of the perturbations. We study the evolution of matter density perturbations on low redshifts for this potential and show that the growth index today gamma_0 can have significant dispersion on scales relevant for large scale structures. The values of gamma_0 can be even smaller than 0.2 with large variations of gamma on very low redshifts for the model parameters constrained by local gravity tests. This gives a possibility to clearly distinguish these chameleon models from the Lambda-Cold-Dark-Matter model in future high-precision observations.Comment: 16 pages, 8 figure

    Galileon gravity and its relevance to late time cosmic acceleration

    Full text link
    We consider the covariant galileon gravity taking into account the third order and fourth order scalar field Lagrangians L_3(\pi) and L_4(\pi) consisting of three and four π\pi's with four and five derivatives acting on them respectively. The background dynamical equations are set up for the system under consideration and the stability of the self accelerating solution is demonstrated in general setting. We extended this study to the general case of the fifth order theory. For spherically symmetric static background, we spell out conditions for suppression of fifth force effects mediated by the galileon field π\pi. We study the field perturbations in the fixed background and investigate conditions for their causal propagation. We also briefly discuss metric fluctuations and derive evolution equation for matter perturbations in galileon gravity.Comment: 11 pages, no figure, minor clarifications and few refs added, to appear in pr

    Background cosmological dynamics in f(R)f(R) gravity and observational constraints

    Full text link
    In this paper, we carry out a study of viable cosmological models in f(R)f(R)-gravity at the background level. We use observable parameters like Ω\Omega and γ\gamma to form autonomous system of equations and show that the models under consideration exhibit two different regimes in their time evolution, namely, a phantom phase followed by a quintessence like behavior. We employ statefinder parameters to emphasize a characteristic discriminative signature of these models.Comment: 6 pages, Latex style, 9 eps figures, replaced versions with new references added, Submitted to Phys.Rev.

    Scalar-Tensor Models of Normal and Phantom Dark Energy

    Get PDF
    We consider the viability of dark energy (DE) models in the framework of the scalar-tensor theory of gravity, including the possibility to have a phantom DE at small redshifts zz as admitted by supernova luminosity-distance data. For small zz, the generic solution for these models is constructed in the form of a power series in zz without any approximation. Necessary constraints for DE to be phantom today and to cross the phantom divide line p=−ρp=-\rho at small zz are presented. Considering the Solar System constraints, we find for the post-Newtonian parameters that ÎłPN<1\gamma_{PN}<1 and ÎłPN,0≈1\gamma_{PN,0}\approx 1 for the model to be viable, and ÎČPN,0>1\beta_{PN,0}>1 (but very close to 1) if the model has a significantly phantom DE today. However, prospects to establish the phantom behaviour of DE are much better with cosmological data than with Solar System experiments. Earlier obtained results for a Λ\Lambda-dominated universe with the vanishing scalar field potential are extended to a more general DE equation of state confirming that the cosmological evolution of these models rule them out. Models of currently fantom DE which are viable for small zz can be easily constructed with a constant potential; however, they generically become singular at some higher zz. With a growing potential, viable models exist up to an arbitrary high redshift.Comment: 30 pages, 4 figures; Matches the published version containing an expanded discussion of various point

    Numbers in the Blind's “Eye”

    Get PDF
    Background: Although lacking visual experience with numerosities, recent evidence shows that the blind perform similarly to sighted persons on numerical comparison or parity judgement tasks. In particular, on tasks presented in the auditory modality, the blind surprisingly show the same effect that appears in sighted persons, demonstrating that numbers are represented through a spatial code, i.e. the Spatial-Numerical Association of Response Codes (SNARC) effect. But, if this is the case, how is this numerical spatial representation processed in the brain of the blind? Principal Findings: Here we report that, although blind and sighted people have similarly organized numerical representations, the attentional shifts generated by numbers have different electrophysiological correlates (sensorial N100 in the sighted and cognitive P300 in the blind). Conclusions: These results highlight possible differences in the use of spatial representations acquired through modalities other than vision in the blind population

    The growth of matter perturbations in some scalar-tensor DE models

    Full text link
    We consider asymptotically stable scalar-tensor dark energy (DE) models for which the equation of state parameter wDEw_{DE} tends to zero in the past. The viable models are of the phantom type today, however this phantomness is milder than in General Relativity if we take into account the varying gravitational constant when dealing with the SNIa data. We study further the growth of matter perturbations and we find a scaling behaviour on large redshifts which could provide an important constraint. In particular the growth of matter perturbations on large redshifts in our scalar-tensor models is close to the standard behaviour ÎŽm∝a\delta_m \propto a, while it is substantially different for the best-fit model in General Relativity for the same parametrization of the background expansion. As for the growth of matter perturbations on small redshifts, we show that in these models the parameter Îł0â€Č≡γâ€Č(z=0)\gamma'_0\equiv \gamma'(z=0) can take absolute values much larger than in models inside General Relativity. Assuming a constant Îł\gamma when Îł0â€Č\gamma'_0 is large would lead to a poor fit of the growth function ff. This provides another characteristic discriminative signature for these models.Comment: 13 pages, 7 figures, matches version published in JCA
    corecore