1 research outputs found

    Non-volatile molecular memory elements based on ambipolar nanotube field effect transistors

    Full text link
    We have fabricated air-stable n-type, ambipolar carbon nanotube field effect transistors (CNFETs), and used them in nanoscale memory cells. N-type transistors are achieved by annealing of nanotubes in hydrogen gas and contacting them by cobalt electrodes. Scanning gate microscopy reveals that the bulk response of these devices is similar to gold-contacted p-CNFETs, confirming that Schottky barrier formation at the contact interface determines accessibility of electron and hole transport regimes. The transfer characteristics and Coulomb Blockade (CB) spectroscopy in ambipolar devices show strongly enhanced gate coupling, most likely due to reduction of defect density at the silicon/silicon-dioxide interface during hydrogen anneal. The CB data in the ``on''-state indicates that these CNFETs are nearly ballistic conductors at high electrostatic doping. Due to their nanoscale capacitance, CNFETs are extremely sensitive to presence of individual charge around the channel. We demonstrate that this property can be harnessed to construct data storage elements that operate at the few-electron level.Comment: 6 pages text, 3 figures and 1 table of content graphic; available as NanoLetters ASAP article on the we
    corecore