6 research outputs found

    Rheological and Technological Aspects in Designing the Properties of Shear Thickening Fluids

    No full text
    This work focuses on shear thickening fluids (STFs) as ceramic–polymer composites with outstanding protective properties. The investigation aims to determine the influence of raw material parameters on the functional properties of STFs. The following analyses were used to characterize both the raw materials and the STFs: scanning electron microscopy, dynamic light scattering, matrix-assisted laser desorption/ionization time-of-flight, chemical sorption analysis, rheological analysis, and kinetic energy dissipation tests. It was confirmed that the morphology of the solid particles plays a key role in designing the rheological and protective properties of STFs. In the case of irregular silica, shear thickening properties can be obtained from a solid content of 12.5 vol.%. For spherical silica, the limit for achieving shear thickening behavior is 40 vol.%. The viscosity curve analysis allowed for the introduction of a new parameter defining the functional properties of STFs: the technological critical shear rate. The ability of STFs to dissipate kinetic energy was determined using a unique device that allows pure fluids to be tested without prior encapsulation. Because of this, it was possible to observe even slight differences in the protective properties between different STFs, which has not been possible so far. During tests with an energy of 50 J, the dissipation factor was over 96%

    The Influence of UV Radiation Aging on Degradation of Shear Thickening Fluids

    No full text
    Shear thickening fluids (STFs) are innovative materials that can find applications in smart body armor. However, the usage of STFs is limited by the aging of these materials. This work aims to analyze the influence of UV radiation on the aging process of STFs. The investigation was done experimentally, and artificial aging was applied to investigate the impact of UV radiation on the properties of STFs. The shear-thickening properties of obtained STFs were confirmed by viscosity measurements. The STFs based on PPG425, PPG2700, and KE-P10 exhibited a very high maximum viscosity of up to 580.7 Pa·s and 3313 Pa·s for the STF425 and STF2700, respectively. The aging of the obtained STFs caused the liquid matrix degradation, causing damage to the STFs and their change from liquid into solid. Furthermore, the FT-IR, 1H NMR, and 13C NMR spectroscopies were used for the confirmation of the breakdown of STFs. The FT-IR spectroscopy revealed the appearance of carbonyl groups in STFs after aging. Moreover, 1H NMR and 13C NMR spectroscopy confirmed the formation of the typical groups containing carbonyl groups. Our results demonstrate that STFs are UV light-sensitive and may lose their properties during storage

    ZTA Pipes with a Gradient Structure-Effect of the Rheological the Behavior of Ceramic Suspensions on the Gradient Structure and Characterized of the Obtained Products

    No full text
    This paper focuses on the verifying the possibility of producing Al2O3-ZrO2 composite pipes with a gradient structure using centrifugal slip casting method. The aim of the research is to define the correlation between the rheological properties of aqueous suspensions of ceramic powders with different solid loading and obtaining the ZrO2 phase gradient in the Al2O3 matrix. Such products, due to their unique properties, can be utilized in the transport of aggressive substances, even in extreme temperature or corrosive conditions. The suspensions and the sintered samples were characterized by: broad rheological analysis, scanning electron microscopy, X-ray diffraction, stereological analysis and Vickers hardness tests. The study reports on a series of samples produced of ceramic suspensions (70 vol.% Al2O3–30 vol.% ZrO2) differing in the total solid loading in the range of 30–55 vol.%. The results clearly indicate that obtaining the gradient structure of ceramic-ceramic composite pipes is closely related to the rheological properties of the suspensions from which the samples are cast. The phase gradient is obtainable from suspensions 30–40 vol.%, in which the possibility of moving ZrO2 particles relative to the Al2O3 is quite high—these suspensions are characterized by low viscosity and the dominance of viscous over elastic properties (G′ > G″)

    Sintering Behavior, Thermal Expansion, and Environmental Impacts Accompanying Materials of the Al2O3/ZrO2 System Fabricated via Slip Casting

    No full text
    This work focuses on research on obtaining and characterizing Al2O3/ZrO2 materials formed via slip casting method. The main emphasis in the research was placed on environmental aspects and those related to the practical use of ceramic materials. The goal was to analyze the environmental loads associated with the manufacturing of Al2O3/ZrO2 composites, as well as to determine the coefficient of thermal expansion of the obtained materials, classified as technical ceramics. This parameter is crucial in terms of their practical applications in high-temperature working conditions, e.g., as parts of industrial machines. The study reports on the four series of Al2O3/ZrO2 materials differing in the volume content of ZrO2. The sintering process was preceded by thermogravimetric measurements. The fabricated and sintered materials were characterized by dilatometric study, scanning electron microscopy, X-ray diffraction, and stereological analysis. Further, life cycle assessment was supplied. Based on dilatometric tests, it was observed that Al2O3/ZrO2 composites show a higher coefficient of thermal expansion than that resulting from the content of individual phases. The results of the life cycle analysis showed that the environmental loads (carbon footprint) resulting from the acquisition and processing of raw materials necessary for the production of sinters from Al2O3 and ZrO2 are comparable to those associated with the production of plastic products such as polypropylene or polyvinyl chloride

    Study on Manufacturing via Slip Casting and Properties of Alumina-Titanium Composite Enhanced by Thialite Phase

    No full text
    This paper aims to study the Al2O3/Ti ceramic-metal composite obtained by the slip casting method. Samples containing 50% volume of the solid phase, including 10% volume of the metallic phase, were investigated. The rheological properties were analyzed. Thermogravimetric analysis was performed. The properties of the obtained composite determined the phase composition using and SEM/EDS microstructural analysis and the XRD method. The size of the titanium particles equals 20.6 ± 10.1 mm, which corresponds to 27.5% of the initial size and indicates significant fragmentation of the titanium powder during the manufacturing of the composite. The relative density of the fabricated composites was equal to 99%. The slip casting method allows to obtain the proposed composite additionally enhanced by the presence of TiO2 and Al2TiO5 (thialite). Research results revealed a non-Newtonian character of the composite suspension flow with clear thinning under the influence of increasing shear forces. The obtained composites are characterized by the lack of visible defects (cracks, microcracks and delamination) on the surface

    Characterization of Al<sub>2</sub>O<sub>3</sub> Matrix Composites Fabricated via the Slip Casting Method Using NiAl-Al<sub>2</sub>O<sub>3</sub> Composite Powder

    No full text
    This work aimed to characterize Al2O3 matrix composites fabricated by the slip casting method using NiAl-Al2O3 composite powder as the initial powder. The composite powder, consisting of NiAl + 30 wt.% Al2O3, was obtained by mechanical alloying of Al2O3, Al, and Ni powders. The composite powder was added to the Al2O3 powder to prepare the final powder for the slip casting method. The stained composite samples presented high density. EDX and XRD analyses showed that the sintering process of the samples in an air atmosphere caused the formation of the NiAl2O4 spinel phase. Finally, the phase composition of the composites changed from the initial phases of Al2O3 and NiAl to Al2O3, Ni, and NiAl2O4. However, in the area of Ni, fine Al2O3 particles remaining from the initial composite powder were visible. It can be concluded that after slip casting, after starting with Al2O3 and the composite powder (NiAl-Al2O3) and upon sintering in air, ceramic matrix composites with Ni and NiAl2O4 phases, complex structures, high-quality sintered samples, and favorable mechanical properties were obtained
    corecore