124 research outputs found

    A compound current limiter and circuit breaker

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. The protection of sensitive loads against voltage drop is a concern for the power system. A fast fault current limiter and circuit breaker can be a solution for rapid voltage recovery of sensitive loads. This paper proposes a compound type of current limiter and circuit breaker (CLCB) which can limit fault current and fast break to adjust voltage sags at the protected buses. In addition, it can act as a circuit breaker to open the faulty line. The proposed CLCB is based on a series L-C resonance, which contains a resonant transformer and a series capacitor bank. Moreover, the CLCB includes two anti-parallel power electronic switches (a diode and an IGBT) connected in series with bus couplers. In order to perform an analysis of CLCB performance, the proposed structure was simulated using MATLAB. In addition, an experimental prototype was built, tested, and the experimental results were reported. Comparisons show that experimental results were in fair agreement with the simulation results and confirm CLCB’s ability to act as a fault current limiter and a circuit breaker

    A multi-inductor h bridge fault current limiter

    Get PDF
    © 2019 by the authors. Current power systems will suffer from increasing pressure as a result of an upsurge in demand and will experience an ever-growing penetration of distributed power generation, which are factors that will contribute to a higher of incidence fault current levels. Fault current limiters (FCLs) are key power electronic devices. They are able to limit the prospective fault current without completely disconnecting in cases in which a fault occurs, for instance, in a power transmission grid. This paper proposes a new type of FCL capable of fault current limiting in two steps. In this way, the FCLs’ power electronic switches experience significantly less stress and their overall performance will significantly increase. The proposed device is essentially a controllable H bridge type fault current limiter (HBFCL) that is comprised of two variable inductances, which operate to reduce current of main switch in the first stage of current limiting. In the next step, the main switch can limit the fault current while it becomes open. Simulation studies are carried out using MATLAB and its prototype setup is built and tested. The comparison of experimental and simulation results indicates that the proposed HBFCL is a promising solution to address protection issues

    Microgrids interconnection to upstream AC grid using a dual-function fault current limiter and power flow controller: Principle and test results

    Full text link
    This study presents a novel magnetic-based solid-state dual-function fault current limiter and power flow controller (FLPFC) that offers a promising application for safe and controllable interconnection of microgrids to upstream AC grids. The proposed structure includes series reactors and power electronic switches that protects microgrid from upstream AC grid short-circuit fault and it controls the power flow between microgrid and upstream grid. Performance of the proposed FLPFC is analysed and simulated using Matlab/Simulink and results are confirmed by experimental tests

    Distribution system protection by coordinated fault current limiters

    Full text link
    The protection of distribution networks is one of the most substantial issues, which needs special attention. Using appropriate protective equipment enhances the safety of the power distribution network during the fault conditions. Fault current limiter (FCL) is a kind of modern preserving system being used for protecting power networks and equipment. One of the main concerns of power networks is the voltage restoration of buses during faulty conditions. In this study, a group of coordinated DC reactor type faults current limiters are designed and tested to protect the network and restore its buses voltage within the fault period. To coordinate FCLs and measurement devices during the fault sequences, a wireless communication system and decision-making computer are used. The proposed FCLs coordination strategy is modelled and simulated in MATLAB platform and the results are validated by the developed laboratory test setu

    A magnetic topological semimetal Sr1-y Mn1-zSb2 (y, z \u3c 0.1)

    Get PDF
    Weyl (WSMs) evolve from Dirac semimetals in the presence of broken time-reversal symmetry (TRS) or space-inversion symmetry. The WSM phases in TaAs-class materials and photonic crystals are due to the loss of space-inversion symmetry. For TRS-breaking WSMs, despite numerous theoretical and experimental efforts, few examples have been reported. In this Article, we report a new type of magnetic semimetal Sr1-y Mn1-z Sb2 (y, z \u3c 0.1) with nearly massless relativistic fermion behaviour (m-=0.04-0.05m0, where m 0 is the free-electron mass). This material exhibits a ferromagnetic order for 304

    Enhancing Electron Coherence via Quantum Phonon Confinement in Atomically Thin Nb3SiTe6

    Get PDF
    The extraordinary properties of two dimensional (2D) materials, such as the extremely high carrier mobility in graphene and the large direct band gaps in transition metal dichalcogenides MX2 (M = Mo or W, X = S, Se) monolayers, highlight the crucial role quantum confinement can have in producing a wide spectrum of technologically important electronic properties. Currently one of the highest priorities in the field is to search for new 2D crystalline systems with structural and electronic properties that can be exploited for device development. In this letter, we report on the unusual quantum transport properties of the 2D ternary transition metal chalcogenide - Nb3SiTe6. We show that the micaceous nature of Nb3SiTe6 allows it to be thinned down to one-unit-cell thick 2D crystals using microexfoliation technique. When the thickness of Nb3SiTe6 crystal is reduced below a few unit-cells thickness, we observed an unexpected, enhanced weak-antilocalization signature in magnetotransport. This finding provides solid evidence for the long-predicted suppression of electron-phonon interaction caused by the crossover of phonon spectrum from 3D to 2D.Comment: Accepted by Nature Physic
    corecore