16 research outputs found

    Исследование углеволокнистых каталитических систем низкотемпературного окисления СО в условиях имитации дыхания

    Get PDF
    A plant for studying fibrous carbon catalytic systems in the low temperature carbon monoxide oxidation reaction under human breath simulation conditions has been developed. Under human breath simulation conditions in absence of water, catalytic activity of the system is attributed to presence of highly dispersed palladium oxide in the palladium-copper-iron catalyst, and the reaction mechanism for these conditions is a separate one.Разработана установка для испытания углеволокнистых каталитических систем низкотемпературного окисления СО в условиях, имитирующих дыхание человека. Показано, что в условиях имитации дыхания при отсутствии воды в системе активность в низкотемпературном окислении CO обусловлена наличием в палладиймедьжелезосодержащем катализаторе высокодисперсного оксида палладия PdO и протеканием реакции по раздельному механизму

    Катализатор восстановления оксида азота оксидом углерода

    Get PDF
    The catalyst for NO reduction by carbon monoxide containing copper chromite, chromium, copper and iron oxides on y-Al2O3, has been developed. NO conversion over the catalyst in the reaction mixture containing 10 vol.% of oxygen is up to 83 % (200 °C, 12 000 h-1). Carbon monoxide oxidation proceeds at the expense of catalyst lattice oxygen, and the resultant reduced sites are oxidized by nitrous oxide or oxygen from gaseous phase.Разработан катализатор восстановления NO оксидом углерода, содержащий хромит меди, оксиды хрома, меди и железа на y-Al2O3. Конверсия NO в его присутствии достигает ~83 % при 10 об.% кислорода в газовой смеси (200оС, 12000 ч-1). Окисление СО идет за счет решеточного кислорода катализатора, а образующиеся восстановленные центры катализатора окисляются оксидом азота или газообразным кислородом

    The influence of surface functionalization of activated carbon on palladium dispersion and catalytic activity in hydrogen oxidation

    No full text
    Stone-fruit activated carbon (SAC) and modified versions containing acidic oxygen and basic nitrogen groups have been used to prepare palladium catalysts by wet impregnation. Carbon supports and catalysts are investigated by thermo-gravimetric analysis, TPD, oxygen chemisorption, TEM and XPS. The influence of the nature of the functional groups on the dispersion and oxidation state of palladium and its activity in hydrogen oxidation is investigated. Pd dispersion is found to increase with the basic strength of functional groups on the support. XPS reveals that introduction of amine groups in SAC results in an increased proportion of Pd0, resistant to re-oxidation. Palladium catalysts supported on activated carbon modified by diethylamine groups are found to exhibit the highest metal dispersion and greatest activity in hydrogen oxidation
    corecore