16 research outputs found

    Dosimetry for photo chemical internalization in pre-clinical trials

    No full text

    An Intense Attosecond Light Source - from Generation to Application

    No full text
    Short and intense XUV pulses are important tools to study ultrafast dynamics and non-linear processes in matter. These pulses can be generated by free electron lasers (FELs) or by high-order harmonic generation (HHG), which are two complementary techniques. The advantage of HHG is the possibility to generate pulses with durations on the attosecond timescale, but the low conversion efficiency of the process makes it difficult to achieve pulses sufficiently intense for non-linear ionization. In HHG an infrared (IR) laser pulse is focused into a gas and new, higher frequencies in the extreme ultraviolet (XUV) regime are generated. To achieve intense XUV light, many photons must be generated and subsequently focused tightly in the experiment. This thesis describes the build-up of the Intense XUV Beamline in Lund and development of spectrometers used to study the charged fragments resulting from the non-linear ionization. An energetic and low repetition rate laser is used, and by focusing the pulse using a long focal length lens, the optimum intensity for HHG can be achieved in a large volume of gas. The XUV beam is tightly focused in the experiment using a short focal length mirror. Due to the low repetition rate in the experiment, a spectrometer that can record many events per shot was designed and constructed. The spectrometer is a double sided velocity map imaging spectrometer (DVMIS) that can record electrons and ions simultaneously. By using covariance techniques, correlations between fragments can be retrieved. The XUV pulses generated in the beamline are sufficiently intense to induce non-linear effects in matter and have been used to study two-photon double ionization of neon

    Design and test of a broadband split-and-delay unit for attosecond XUV-XUV pump-probe experiments.

    No full text
    We present the design of a split-and-delay unit for the production of two delayed replicas of an incident extreme ultraviolet (XUV) pulse. The device features a single grazing incidence reflection in combination with attenuation of remaining infrared light co-propagating with the XUV beam, offering a high throughput without the need of introducing additional optics that would further decrease the XUV flux. To achieve the required spatial and temporal stabilities, the device is controlled by two PID-controllers monitoring the delay and the beam pointing using an optical reference laser beam, making collimation of the beam by additional optics unnecessary. Finally, we demonstrate the stability of the split-and-delay unit by performing all-reflective autocorrelation measurements on broadband few-cycle laser pulses

    Efficient high-order harmonic generation boosted by below-threshold harmonics.

    Get PDF
    High-order harmonic generation (HHG) in gases has been established as an important technique for the generation of coherent extreme ultraviolet (XUV) pulses at ultrashort time scales. Its main drawback, however, is the low conversion efficiency, setting limits for many applications, such as ultrafast coherent imaging, nonlinear processes in the XUV range, or seeded free electron lasers. Here we introduce a novel scheme based on using below-threshold harmonics, generated in a "seeding cell", to boost the HHG process in a "generation cell", placed further downstream in the focused laser beam. By modifying the fundamental driving field, these low-order harmonics alter the ionization step of the nonlinear HHG process. Our dual-cell scheme enhances the conversion efficiency of HHG, opening the path for the realization of robust intense attosecond XUV sources

    Interference in the angular distribution of photoelectrons in superimposed XUV and optical laser fields

    No full text
    The angular distribution of photoelectrons ejected during the ionization of Ne atoms by extreme ultraviolet (XUV) free-electron laser radiation in the presence of an intense near infrared (NIR) dressing field was investigated experimentally and theoretically. A highly nonlinear process with absorption and emission of more than ten NIR photons results in the formation of numerous sidebands. The amplitude of the sidebands varies strongly with the emission angle and the angular distribution pattern reveals clear signatures of interferences between the different angular momenta for the outgoing electron in the multi-photon process. As a specific feature, the central photoelectron line is characterized at the highest NIR fields by an angular distribution, which is peaked perpendicularly to both the XUV and NIR polarization directions. Experimental results are reproduced by a theoretical model based on the strong field approximation

    A versatile velocity map ion-electron covariance imaging spectrometer for high-intensity XUV experiments

    No full text
    We report on the design and performance of a velocity map imaging (VMI) spectrometer optimized for experiments using high-intensity extreme ultraviolet (XUV) sources such as laser-driven high-order harmonic generation (HHG) sources and free-electron lasers (FELs). Typically exhibiting low repetition rates and high single-shot count rates, such experiments do not easily lend themselves to coincident detection of photo-electrons and -ions. In order to obtain molecular frame or reaction channel-specific information, one has to rely on other correlation techniques, such as covariant detection schemes. Our device allows for combining different photo-electron and -ion detection modes for covariance analysis. We present the expected performance in the different detection modes and present the first results using an intense high-order harmonic generation (HHG) source

    Interference in the angular distribution of photoelectrons in superimposed XUV and optical laser fields

    No full text
    The angular distribution of photoelectrons ejected during the ionization of Ne atoms by extreme ultraviolet (XUV) free-electron laser radiation in the presence of an intense near infrared (NIR) dressing field was investigated experimentally and theoretically. A highly nonlinear process with absorption and emission of more than ten NIR photons results in the formation of numerous sidebands. The amplitude of the sidebands varies strongly with the emission angle and the angular distribution pattern reveals clear signatures of interferences between the different angular momenta for the outgoing electron in the multi-photon process. As a specific feature, the central photoelectron line is characterized at the highest NIR fields by an angular distribution, which is peaked perpendicularly to both the XUV and NIR polarization directions. Experimental results are reproduced by a theoretical model based on the strong field approximation

    Compression of TW class laser pulses in a planar hollow waveguide for applications in strong-field physics

    Get PDF
    International audienceWe demonstrate pulse post-compression of a TW class chirped pulse amplification laser em-ploying a gas-filled planar hollow waveguide. A waveguide throughput of 80% is achieved for 50 mJ input pulse energy. Good focusability is found and after compression with chirped mirrors a pulse duration of sub-15 fs is measured in the beam center. Whereas a total energy efficiency of ≈70% should be achievable, our post-compressor currently delivers 20 mJ output pulse energy (≈40% efficiency), mostly limited by apertures of chirped mirrors and vacuum windows. The viability of the planar hollow waveguide compres-sion scheme for applications in strong-field physics is demonstrated by generating high-order harmonics in a pulsed Ar gas cell

    Two-Photon Double Ionization of Neon Studied with Intense Attosecond Pulse Trains

    No full text
    We focused an intense attosecond pulse train into a neon gas target and observed Ne2+ resulting from two-photon double ionization. By modifying the photon spectrum we find that the process is dominated by the sequential ionization via the Ne+ ion
    corecore