25 research outputs found

    Strong Evidence of Anomalous Microwave Emission from the Flux Density Spectrum of M31

    Get PDF
    We have observed the Andromeda galaxy, Messier 31 (M31), at 6.7 GHz with the Sardinia Radio Telescope. We mapped the radio emission in the C-band, re-analyzed WMAP and Planck maps, as well as other ancillary data, and we have derived an overall integrated flux density spectrum from the radio to the infrared. This allowed us to estimate the emission budget from M31. Integrating over the whole galaxy, we found strong and highly significant evidence for anomalous microwave emission (AME), at the level of 1.45_(-0.19)^(+0.17) Jy at the peaking frequency of ≃ 25 GHz. Decomposing the spectrum into known emission mechanisms such as free–free, synchrotron, thermal dust, and AME arising from electric dipole emission from rapidly rotating dust grains, we found that the overall emission from M31 is dominated, at frequencies below 10 GHz, by synchrotron emission with a spectral index of -1.10_(-0.08)^(+0.10), with subdominant free–free emission. At frequencies ≳ 10 GHz, AME has a similar intensity to that of synchrotron and free–free emission, overtaking them between 20 and 50 GHz, whereas thermal dust emission dominates the emission budget at frequencies above 60 GHz, as expected

    Strong Evidence of Anomalous Microwave Emission from the Flux Density Spectrum of M31

    Get PDF
    We have observed the Andromeda galaxy, Messier 31 (M31), at 6.7 GHz with the Sardinia Radio Telescope. We mapped the radio emission in the C-band, re-analyzed WMAP and Planck maps, as well as other ancillary data, and we have derived an overall integrated flux density spectrum from the radio to the infrared. This allowed us to estimate the emission budget from M31. Integrating over the whole galaxy, we found strong and highly significant evidence for anomalous microwave emission (AME), at the level of 1.45_(-0.19)^(+0.17) Jy at the peaking frequency of ≃ 25 GHz. Decomposing the spectrum into known emission mechanisms such as free–free, synchrotron, thermal dust, and AME arising from electric dipole emission from rapidly rotating dust grains, we found that the overall emission from M31 is dominated, at frequencies below 10 GHz, by synchrotron emission with a spectral index of -1.10_(-0.08)^(+0.10), with subdominant free–free emission. At frequencies ≳ 10 GHz, AME has a similar intensity to that of synchrotron and free–free emission, overtaking them between 20 and 50 GHz, whereas thermal dust emission dominates the emission budget at frequencies above 60 GHz, as expected

    MISTRAL and its KIDs

    Get PDF
    The MIllimetric Sardinia radio Telescope Receiver based on Array of Lumped elements KIDs, MISTRAL, is a cryogenic W-band (77–103 GH) LEKID camera which will be integrated at the Gregorian focus of the 64 m aperture Sardinia Radio Telescope, in Italy, in Autumn 2022. This instrument, thanks to its high angular resolution (∼13arcsec) and the wide instantaneous field of view (∼4arcmin), will allow continuum surveys of the mm-wave sky with a variety of scientific targets, spanning from extragalactic astrophysics to solar system science. In this contribution, we will describe the design of the MISTRAL camera, with a particular focus on the optimisation and test of a prototype of the focal plane

    High angular resolution Sunyaev Zel’dovich observations: The case of MISTRAL

    Get PDF
    The MIllimeter Sardinia radio Telescope Receiver based on Array of Lumped elements kids, MISTRAL, is a millimetric (≃ 90GHz) multipixel camera being built for the Sardinia Radio Telescope. It is going to be a facility instrument and will sample the sky with 12 arcsec angular resolution, 4 arcmin field of view, through 408 Kinetic Inductance Detectors (KIDs). The construction and the beginning of commissioning is planned to be in 2022. MISTRAL will allow the scientific community to propose a wide variety of scientific cases including protoplanetary discs study, star forming regions, galaxies radial profiles, and high angular resolution measurements of the Sunyaev Zel'dovich (SZ) effect with the investigation of the morphology of galaxy cluster and the search for the Cosmic Web

    The Atacama Cosmology Telescope: High-resolution component-separated maps across one-third of the sky

    Full text link
    Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-yy distortion due to the thermal Sunyaev-Zel'dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multi-wavelength observations to spectrally isolate one component. In this work, we present a new arcminute-resolution Compton-yy map, which traces out the line-of-sight-integrated electron pressure, as well as maps of the CMB in intensity and E-mode polarization, across a third of the sky (around 13,000 sq.~deg.). We produce these through a joint analysis of data from the Atacama Cosmology Telescope (ACT) Data Release 4 and 6 at frequencies of roughly 93, 148, and 225 GHz, together with data from the \textit{Planck} satellite at frequencies between 30 GHz and 545 GHz. We present detailed verification of an internal linear combination pipeline implemented in a needlet frame that allows us to efficiently suppress Galactic contamination and account for spatial variations in the ACT instrument noise. These maps provide a significant advance, in noise levels and resolution, over the existing \textit{Planck} component-separated maps and will enable a host of science goals including studies of cluster and galaxy astrophysics, inferences of the cosmic velocity field, primordial non-Gaussianity searches, and gravitational lensing reconstruction of the CMB.Comment: The Compton-y map and associated products will be made publicly available upon publication of the paper. The CMB T and E mode maps will be made available when the DR6 maps are made publi

    The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth

    Full text link
    We present new measurements of cosmic microwave background (CMB) lensing over 94009400 sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3%2.3\% precision (43σ43\sigma significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. The baseline spectrum is well fit by a lensing amplitude of Alens=1.013±0.023A_{\mathrm{lens}}=1.013\pm0.023 relative to the Planck 2018 CMB power spectra best-fit Λ\LambdaCDM model and Alens=1.005±0.023A_{\mathrm{lens}}=1.005\pm0.023 relative to the ACT DR4+WMAP\text{ACT DR4} + \text{WMAP} best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination S8CMBL≡σ8(Ωm/0.3)0.25S^{\mathrm{CMBL}}_8 \equiv \sigma_8 \left({\Omega_m}/{0.3}\right)^{0.25} of S8CMBL=0.818±0.022S^{\mathrm{CMBL}}_8= 0.818\pm0.022 from ACT DR6 CMB lensing alone and S8CMBL=0.813±0.018S^{\mathrm{CMBL}}_8= 0.813\pm0.018 when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with Λ\LambdaCDM model constraints from Planck or ACT DR4+WMAP\text{ACT DR4} + \text{WMAP} CMB power spectrum measurements. Our lensing measurements from redshifts z∼0.5z\sim0.5--55 are thus fully consistent with Λ\LambdaCDM structure growth predictions based on CMB anisotropies probing primarily z∼1100z\sim1100. We find no evidence for a suppression of the amplitude of cosmic structure at low redshiftsComment: 45+21 pages, 50 figures. Prepared for submission to ApJ. Also see companion papers Madhavacheril et al and MacCrann et a

    The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters

    Full text link
    We present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations σ8=0.819±0.015\sigma_8 = 0.819 \pm 0.015 at 1.8% precision, S8≡σ8(Ωm/0.3)0.5=0.840±0.028S_8\equiv\sigma_8({\Omega_{\rm m}}/0.3)^{0.5}=0.840\pm0.028 and the Hubble constant H0=(68.3±1.1) km s−1 Mpc−1H_0= (68.3 \pm 1.1)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1} at 1.6% precision. A joint constraint with CMB lensing measured by the Planck satellite yields even more precise values: σ8=0.812±0.013\sigma_8 = 0.812 \pm 0.013, S8≡σ8(Ωm/0.3)0.5=0.831±0.023S_8\equiv\sigma_8({\Omega_{\rm m}}/0.3)^{0.5}=0.831\pm0.023 and H0=(68.1±1.0) km s−1 Mpc−1H_0= (68.1 \pm 1.0)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}. These measurements agree well with Λ\LambdaCDM-model extrapolations from the CMB anisotropies measured by Planck. To compare these constraints to those from the KiDS, DES, and HSC galaxy surveys, we revisit those data sets with a uniform set of assumptions, and find S8S_8 from all three surveys are lower than that from ACT+Planck lensing by varying levels ranging from 1.7-2.1σ\sigma. These results motivate further measurements and comparison, not just between the CMB anisotropies and galaxy lensing, but also between CMB lensing probing z∼0.5−5z\sim 0.5-5 on mostly-linear scales and galaxy lensing at z∼0.5z\sim 0.5 on smaller scales. We combine our CMB lensing measurements with CMB anisotropies to constrain extensions of Λ\LambdaCDM, limiting the sum of the neutrino masses to ∑mν<0.12\sum m_{\nu} < 0.12 eV (95% c.l.), for example. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the Λ\LambdaCDM model, while paving a promising path for neutrino physics with gravitational lensing from upcoming ground-based CMB surveys.Comment: 30 pages, 16 figures, prepared for submission to ApJ. Cosmological likelihood data is here: https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also see companion papers Qu et al and MacCrann et al. Mass maps will be released when papers are publishe

    The Atacama Cosmology Telescope: A measurement of the DR6 CMB lensing power spectrum and its implications for structure growth

    Get PDF
    We present new measurements of cosmic microwave background (CMB) lensing over 9400 deg2 of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB data set, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3% precision (43σ significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure that our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. Our CMB lensing power spectrum measurement provides constraints on the amplitude of cosmic structure that do not depend on Planck or galaxy survey data, thus giving independent information about large-scale structure growth and potential tensions in structure measurements. The baseline spectrum is well fit by a lensing amplitude of A lens = 1.013 ± 0.023 relative to the Planck 2018 CMB power spectra best-fit ΛCDM model and A lens = 1.005 ± 0.023 relative to the ACT DR4 + WMAP best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination S8CMBL≡σ8Ωm/0.30.25 of S8CMBL=0.818±0.022 from ACT DR6 CMB lensing alone and S8CMBL=0.813±0.018 when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with ΛCDM model constraints from Planck or ACT DR4 + WMAP CMB power spectrum measurements. Our lensing measurements from redshifts z ∼ 0.5–5 are thus fully consistent with ΛCDM structure growth predictions based on CMB anisotropies probing primarily z ∼ 1100. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts

    The Atacama Cosmology Telescope: DR6 gravitational lensing map and cosmological parameters

    Get PDF
    We present cosmological constraints from a gravitational lensing mass map covering 9400 deg2 reconstructed from measurements of the cosmic microwave background (CMB) made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with measurements of baryon acoustic oscillations and big bang nucleosynthesis, we obtain the clustering amplitude σ 8 = 0.819 ± 0.015 at 1.8% precision, S8≡σ8(Ωm/0.3)0.5=0.840±0.028 , and the Hubble constant H 0 = (68.3 ± 1.1) km s−1 Mpc−1 at 1.6% precision. A joint constraint with Planck CMB lensing yields σ 8 = 0.812 ± 0.013, S8≡σ8(Ωm/0.3)0.5=0.831±0.023 , and H 0 = (68.1 ± 1.0) km s−1 Mpc−1. These measurements agree with ΛCDM extrapolations from the CMB anisotropies measured by Planck. We revisit constraints from the KiDS, DES, and HSC galaxy surveys with a uniform set of assumptions and find that S 8 from all three are lower than that from ACT+Planck lensing by levels ranging from 1.7σ to 2.1σ. This motivates further measurements and comparison, not just between the CMB anisotropies and galaxy lensing but also between CMB lensing probing z ∼ 0.5–5 on mostly linear scales and galaxy lensing at z ∼ 0.5 on smaller scales. We combine with CMB anisotropies to constrain extensions of ΛCDM, limiting neutrino masses to ∑m ν < 0.13 eV (95% c.l.), for example. We describe the mass map and related data products that will enable a wide array of cross-correlation science. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the ΛCDM model, while paving a promising path for neutrino physics with lensing from upcoming ground-based CMB surveys
    corecore