3 research outputs found

    Efficient passive network description of IC conducted emission models for model reduction

    Get PDF
    This article adresses the model reduction of IC conducted emission models. A method to efficiently deal with the high number of independent sources in IC conducted emission models, which are a strong limitation for model order reduction, is presented. A network alteration is proposed, which allows for a much higher model reduction than standard approaches. The system of the altered network can be more efficiently reduced with standard model order reduction algorithms in order to speed up frequency-simulations. Synthesising the reduced system into a passive electrical network enables fast time-simulations to be made with circuit simulators. The whole procedure is validated by reducing an example of an IC conducted emission model of an 32 Bit microcontroller.BMBF/01M 3169 ABMBF/01M 3169 DBMBF/01M 3169

    Model order reduction of linear time invariant systems

    Get PDF
    This paper addresses issues related to the order reduction of systems with multiple input/output ports. The order reduction is divided up into two steps. The first step is the standard order reduction method based on the multipoint approximation of system matrices by applying Krylov subspace. The second step is based on the rejection of the weak part of a system. To recognise the weak system part, Lyapunov equations are used. Thus, this paper introduces efficient solutions of the Lyapunov equations for port to port subsystems.BMBF/01 M 3169

    Efficient modelling of IC conducted emission for power integrity analysis

    Get PDF
    In this paper two methodologies to reduce the complexity of IC conducted emission models for Power Integrity analysis in ICs are presented. The methodologies differ concerning the applicability in simulation tools, complexity and accuracy of the generated models. The first methodology uses a complex model and reduces its order to generate a model with a fewer number of elements. This methodology therefore involves a model order reduction approach. A second minimum complexity, module based modelling approach is introduced for rough estimations, as the order reduced model is still too complex for some applications. The two methodologies are applied to an IC conducted emission model of two digital modules of a 32 Bit microcontroller. The results of the three models are compared and discussed. Fields of application for the introduced modelling approaches are the estimation of the magnitude and time behaviour of the supply current as well as the determination of the number and position of the IC's supply pins.BMBF/01M 3169 ABMBF/01M 3169 DBMBF/01M 3169
    corecore