16 research outputs found
Magnetic anomalies of offshore Krishna-Godavari basin, eastern continental margin of India
The marine magnetic data acquired from offshore Krishna-Godavari (K-G) basin, eastern continental margin of India (ECMI), brought out a prominent NE-SW trending feature, which could be explained by a buried structural high formed by volcanic activity. The magnetic anomaly feature is also associated with a distinct negative gravity anomaly similar to the one associated with 85°E Ridge. The gravity low could be attributed to a flexure at the Moho boundary, which could in turn be filled with the volcanic material. Inversion of the magnetic and gravity anomalies was also carried out to establish the similarity of anomalies of the two geological features (structural high on the margin and the 85°E Ridge) and their interpretations. In both cases, the magnetic anomalies were caused dominantly by the magnetization contrast between the volcanic material and the surrounding oceanic crust, whereas the low gravity anomalies are by the flexures of the order of 3-4 km at Moho boundary beneath them. The analysis suggests that both structural high present in offshore Krishna-Godavari basin and the 85°E Ridge have been emplaced on relatively older oceanic crust by a common volcanic process, but at discrete times, and that several of the gravity lows in the Bay of Bengal can be attributed to flexures on the Moho, each created due to the load of volcanic material
Paleocene on-spreading-axis hotspot volcanism along the Ninetyeast Ridge: an interaction between the Kerguelen hotspot and the Wharton spreading center
Investigations of three plausible tectonic settings of the Kerguelen hotspot relative to the Wharton spreading center evoke the on-spreading-axis hotspot volcanism of Paleocene (60-54 Ma) age along the Ninetyeast Ridge. The hypothesis is consistent with magnetic lineations and abandoned spreading centers of the eastern Indian Ocean and seismic structure and radiometric dates of the Ninetyeast Ridge. Furthermore, it is supported by the occurrence of oceanic andesites at Deep Sea Drilling Project (DSDP) Site 214, isotopically heterogeneous basalts at Ocean Drilling Program (ODP) Site 757 of approximately the same age (59-58 Ma) at both sites. Intermix basalts generated by plume-mid-ocean ridge (MOR) interaction, exist between 11° and 17°S along the Ninetyeast Ridge. A comparison of age profile along the Ninetyeast Ridge between ODP Sites 758 (82 Ma) and 756 (43 Ma) with similarly aged oceanic crust in the Central Indian Basin and Wharton Basin reveals the existence of extra oceanic crust spanning 11° latitude beneath the Ninetyeast Ridge. The extra crust is attributed to the transfer of lithospheric blocks from the Antarctic plate to the Indian plate through a series of southward ridge jumps at about 65, 54 and 42 Ma. Emplacement of volcanic rocks on the extra crust resulted from rapid northward motion (absolute) of the Indian plate. The Ninetyeast Ridge was originated when the spreading centers of the Wharton Ridge were absolutely moving northward with respect to a relatively stationary Kerguelen hotspot with multiple southward ridge jumps. In the process, the spreading center coincided with the Kerguelen hotspot and took place on-spreading-axis volcanism along the Ninetyeast Ridge
