15 research outputs found
Development of a Mobile, Self-Sovereign Identity Approach for Facility Birth Registration in Kenya
Birth registration is a critical element of newborn care. Increasing the coverage of birth registration is an essential part of the strategy to improve newborn survival globally, and is central to achieving greater health, social, and economic equity as defined under the United Nations Sustainable Development Goals. Parts of Eastern and Southern Africa have some of the lowest birth registration rates in the world. Mobile technologies have been used successfully with mothers and health workers in Africa to increase coverage of essential newborn care, including birth registration. However, mounting concerns about data ownership and data protection in the digital age are driving the search for scalable, user-centered, privacy protecting identity solutions. There is increasing interest in understanding if a self-sovereign identity (SSI) approach can help lower the barriers to birth registration by empowering families with a smartphone based process while providing high levels of data privacy and security in populations where birth registration rates are low. The process of birth registration and the barriers experienced by stakeholders are highly contextual. There is currently a gap in the literature with regard to modeling birth registration using SSI technology. This paper describes the development of a smartphone-based prototype system that allows interaction between families and health workers to carry out the initial steps of birth registration and linkage of mothers-baby pairs in an urban Kenyan setting using verifiable credentials, decentralized identifiers, and the emerging standards for their implementation in identity systems. The goal of the project was to develop a high fidelity prototype that could be used to obtain end-user feedback related to the feasibility and acceptability of an SSI approach in a particular Kenyan healthcare context. This paper will focus on how this technology was adapted for the specific context and implications for future research
Micropropagation and conservation of selected endangered anticancer medicinal plants from the Western Ghats of India
Globally, cancer is a constant battle which severely affects the human population. The major limitations of the anticancer drugs are the deleterious side effects on the quality of life. Plants play a vital role in curing many diseases with minimal or no side effects. Phytocompounds derived from various medicinal plants serve as the best source of drugs to treat cancer. The global demand for phytomedicines is mostly reached by the medicinal herbs from the tropical nations of the world even though many plant species are threatened with extinction. India is one of the mega diverse countries of the world due to its ecological habitats, latitudinal variation, and diverse climatic range. Western Ghats of India is one of the most important depositories of endemic herbs. It is found along the stretch of south western part of India and constitutes rain forest with more than 4000 diverse medicinal plant species. In recent times, many of these therapeutically valued herbs have become endangered and are being included under the red-listed plant category in this region. Due to a sharp rise in the demand for plant-based products, this rich collection is diminishing at an alarming rate that eventually triggered dangerous to biodiversity. Thus, conservation of the endangered medicinal plants has become a matter of importance. The conservation by using only in situ approaches may not be sufficient enough to safeguard such a huge bio-resource of endangered medicinal plants. Hence, the use of biotechnological methods would be vital to complement the ex vitro protection programs and help to reestablish endangered plant species. In this backdrop, the key tools of biotechnology that could assist plant conservation were developed in terms of in vitro regeneration, seed banking, DNA storage, pollen storage, germplasm storage, gene bank (field gene banking), tissue bank, and cryopreservation. In this chapter, an attempt has been made to critically review major endangered medicinal plants that possess anticancer compounds and their conservation aspects by integrating various biotechnological tool
Copper/zinc Sods of Salmonella Typhimurium: Enzymatic Properties and Correlation to Pathogenesis
154 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2006.We have however, noted three significant differences between SodCI and SodCII: dimerization, tethering, and protease resistance. SodCI is a dimer and is not released from the periplasm by osmotic shock. Thus SodCI is "tethered" in the periplasm by some non-covalent interaction. In contrast, SodCII is monomeric and is quantitatively released by osmotic shock. Using site-directed mutagenesis we constructed a monomeric, fully active SodCI that is now released by osmotic shock. Thus dimerization is critical for tethering. Upon recombination of the monomeric SodCI allele into the normal chromosomal sodCI locus, we found that the resulting strain is avirulent when competed against the wild type strain, indicating that dimerization and/or tethering is crucial to virulence. Apparently, disrupting the dimeric conformation of SodCI also exposes some regions of the protein that renders SodCI sensitive to proteinase K digestion. This is in sharp contrast to wild-type SodCI, which is resistant to proteinase K. Thus it appears that SodCI must maintain its dimeric conformation, perhaps not for catalytic activity, but possibly to remain tethered within the periplasm in order to resist attack by host proteases, and also to retain its wild-type protease resistance.U of I OnlyRestricted to the U of I community idenfinitely during batch ingest of legacy ETD
Differences in Enzymatic Properties Allow SodCI but Not SodCII To Contribute to Virulence in Salmonella enterica Serovar Typhimurium Strain 14028
Salmonella enterica serovar Typhimurium produces two Cu/Zn cofactored periplasmic superoxide dismutases, SodCI and SodCII. While mutations in sodCI attenuate virulence eightfold, loss of SodCII does not confer a virulence phenotype, nor does it enhance the defect observed in a sodCI background. Despite this in vivo phenotype, SodCI and SodCII are expressed at similar levels in vitro during the stationary phase of growth. By exchanging the open reading frames of sodCI and sodCII, we found that SodCI contributes to virulence when placed under the control of the sodCII promoter. In contrast, SodCII does not contribute to virulence even when expressed from the sodCI promoter. Thus, the disparity in virulence phenotypes is due primarily to some physical difference between the two enzymes. In an attempt to identify the unique property of SodCI, we have tested factors that might affect enzyme activity inside a phagosome. We found no significant difference between SodCI and SodCII in their resistance to acid, resistance to hydrogen peroxide, or ability to obtain copper in a copper-limiting environment. Both enzymes are synthesized as apoenzymes in the absence of copper and can be fully remetallated when copper is added. The one striking difference that we noted is that, whereas SodCII is released normally by an osmotic shock, SodCI is “tethered” within the periplasm by an apparently noncovalent interaction. We propose that this novel property of SodCI is crucial to its ability to contribute to virulence in serovar Typhimurium
Providing assurance and scrutability on shared data and machine learning models with verifiable credentials
Adopting shared data resources requires scientists to place trust in the originators of the data. When shared data is later used in the development of artificial intelligence (AI) systems or machine learning (ML) models, the trust lineage extends to the users of the system, typically practitioners in fields such as healthcare and finance. Practitioners rely on AI developers to have used relevant, trustworthy data, but may have limited insight and recourse. This article introduces a software architecture and implementation of a system based on design patterns from the field of self-sovereign identity. Scientists can issue signed credentials attesting to qualities of their data resources. Data contributions to ML models are recorded in a bill of materials (BOM), which is stored with the model as a verifiable credential. The BOM provides a traceable record of the supply chain for an AI system, which facilitates on-going scrutiny of the qualities of the contributing components. The verified BOM, and its linkage to certified data qualities, is used in the AI scrutineer, a web-based tool designed to offer practitioners insight into ML model constituents and highlight any problems with adopted datasets, should they be found to have biased data or be otherwise discredited
Targeted Chromosomal Knockouts in Mycoplasma pneumoniae▿ †
Most gene knockouts in mycoplasmas are achieved through labor-intensive transposon mutagenesis. Here, we describe a method for making targeted deletions in Mycoplasma pneumoniae by use of homologous recombination. In this method, M. pneumoniae is transformed with a plasmid carrying an antibiotic resistance marker flanked by 1-kb regions surrounding the target gene. Following selection for the antibiotic resistance, colonies are screened for double crossovers which indicate complete deletion of the target open reading frame
Multidrug resistant pathogens respond differently to the presence of co-pathogen, commensal, probiotic and host cells
In light of the ongoing antimicrobial resistance crisis, there is a need to understand the role of co-pathogens, commensals, and the local microbiome in modulating virulence and antibiotic resistance. To identify possible interactions that influence the expression of virulence or survival mechanisms in both the multidrug-resistant organisms (MDROs) and human host cells, unique cohorts of clinical isolates were selected for whole genome sequencing with enhanced assembly and full annotation, pairwise co-culturing, and transcriptome profiling. The MDROs were co-cultured in pairwise combinations either with: (1) another MDRO, (2) skin commensals (Staphylococcus epidermidis and Corynebacterium jeikeium), (3) the common probiotic Lactobacillus reuteri, and (4) human fibroblasts. RNA-Seq analysis showed distinct regulation of virulence and antimicrobial resistance gene responses across different combinations of MDROs, commensals, and human cells. Co-culture assays demonstrated that microbial interactions can modulate gene responses of both the target and pathogen/commensal species, and that the responses are specific to the identity of the pathogen/commensal species. In summary, bacteria have mechanisms to distinguish between friends, foe and host cells. These results provide foundational data and insight into the possibility of manipulating the local microbiome when treating complicated polymicrobial wound, intra-abdominal, or respiratory infections