84 research outputs found

    Adversarial Variational Embedding for Robust Semi-supervised Learning

    Full text link
    Semi-supervised learning is sought for leveraging the unlabelled data when labelled data is difficult or expensive to acquire. Deep generative models (e.g., Variational Autoencoder (VAE)) and semisupervised Generative Adversarial Networks (GANs) have recently shown promising performance in semi-supervised classification for the excellent discriminative representing ability. However, the latent code learned by the traditional VAE is not exclusive (repeatable) for a specific input sample, which prevents it from excellent classification performance. In particular, the learned latent representation depends on a non-exclusive component which is stochastically sampled from the prior distribution. Moreover, the semi-supervised GAN models generate data from pre-defined distribution (e.g., Gaussian noises) which is independent of the input data distribution and may obstruct the convergence and is difficult to control the distribution of the generated data. To address the aforementioned issues, we propose a novel Adversarial Variational Embedding (AVAE) framework for robust and effective semi-supervised learning to leverage both the advantage of GAN as a high quality generative model and VAE as a posterior distribution learner. The proposed approach first produces an exclusive latent code by the model which we call VAE++, and meanwhile, provides a meaningful prior distribution for the generator of GAN. The proposed approach is evaluated over four different real-world applications and we show that our method outperforms the state-of-the-art models, which confirms that the combination of VAE++ and GAN can provide significant improvements in semisupervised classification.Comment: 9 pages, Accepted by Research Track in KDD 201

    Style Separation and Synthesis via Generative Adversarial Networks

    Full text link
    Style synthesis attracts great interests recently, while few works focus on its dual problem "style separation". In this paper, we propose the Style Separation and Synthesis Generative Adversarial Network (S3-GAN) to simultaneously implement style separation and style synthesis on object photographs of specific categories. Based on the assumption that the object photographs lie on a manifold, and the contents and styles are independent, we employ S3-GAN to build mappings between the manifold and a latent vector space for separating and synthesizing the contents and styles. The S3-GAN consists of an encoder network, a generator network, and an adversarial network. The encoder network performs style separation by mapping an object photograph to a latent vector. Two halves of the latent vector represent the content and style, respectively. The generator network performs style synthesis by taking a concatenated vector as input. The concatenated vector contains the style half vector of the style target image and the content half vector of the content target image. Once obtaining the images from the generator network, an adversarial network is imposed to generate more photo-realistic images. Experiments on CelebA and UT Zappos 50K datasets demonstrate that the S3-GAN has the capacity of style separation and synthesis simultaneously, and could capture various styles in a single model

    TACAM: Topic And Context Aware Argument Mining

    Full text link
    In this work we address the problem of argument search. The purpose of argument search is the distillation of pro and contra arguments for requested topics from large text corpora. In previous works, the usual approach is to use a standard search engine to extract text parts which are relevant to the given topic and subsequently use an argument recognition algorithm to select arguments from them. The main challenge in the argument recognition task, which is also known as argument mining, is that often sentences containing arguments are structurally similar to purely informative sentences without any stance about the topic. In fact, they only differ semantically. Most approaches use topic or search term information only for the first search step and therefore assume that arguments can be classified independently of a topic. We argue that topic information is crucial for argument mining, since the topic defines the semantic context of an argument. Precisely, we propose different models for the classification of arguments, which take information about a topic of an argument into account. Moreover, to enrich the context of a topic and to let models understand the context of the potential argument better, we integrate information from different external sources such as Knowledge Graphs or pre-trained NLP models. Our evaluation shows that considering topic information, especially in connection with external information, provides a significant performance boost for the argument mining task
    corecore