1,198 research outputs found
Smartphone picture organization: a hierarchical approach
We live in a society where the large majority of the population has a camera-equipped smartphone. In addition, hard drives and cloud storage are getting cheaper and cheaper, leading to a tremendous growth in stored personal photos. Unlike photo collections captured by a digital camera, which typically are pre-processed by the user who organizes them into event-related folders, smartphone pictures are automatically stored in the cloud. As a consequence, photo collections captured by a smartphone are highly unstructured and because smartphones are ubiquitous, they present a larger variability compared to pictures captured by a digital camera. To solve the need of organizing large smartphone photo collections automatically, we propose here a new methodology for hierarchical photo organization into topics and topic-related categories. Our approach successfully estimates latent topics in the pictures by applying probabilistic Latent Semantic Analysis, and automatically assigns a name to each topic by relying on a lexical database. Topic-related categories are then estimated by using a set of topic-specific Convolutional Neuronal Networks. To validate our approach, we ensemble and make public a large dataset of more than 8,000 smartphone pictures from 40 persons. Experimental results demonstrate major user satisfaction with respect to state of the art solutions in terms of organization.Peer ReviewedPreprin
Unsupervised routine discovery in egocentric photo-streams
The routine of a person is defined by the occurrence of activities throughout
different days, and can directly affect the person's health. In this work, we
address the recognition of routine related days. To do so, we rely on
egocentric images, which are recorded by a wearable camera and allow to monitor
the life of the user from a first-person view perspective. We propose an
unsupervised model that identifies routine related days, following an outlier
detection approach. We test the proposed framework over a total of 72 days in
the form of photo-streams covering around 2 weeks of the life of 5 different
camera wearers. Our model achieves an average of 76% Accuracy and 68% Weighted
F-Score for all the users. Thus, we show that our framework is able to
recognise routine related days and opens the door to the understanding of the
behaviour of people
Voices as equal as others: a narrative inquiry into the doctoral journey of psychologists and psychotherapists from authoritarian background
The relationship with power and authority operates on multiple levels, influencing the development and clinical practice of psychological practitioners. This narrative inquiry explored the lived experiences of power and authority during the training of counselling psychologists and psychotherapists from authoritarian backgrounds. To enhance understanding of power differentials within training and supervisory contexts, practitioners’ training journeys were examined against the backdrop of their life stories, early experiences and attachments. Individual narrative interviews were conducted with six UK-based counselling psychologists and psychotherapists, born and raised in countries with authoritarian regimes in Central and Eastern Europe, Asia, and South America. All transcripts were analysed and condensed into narrative accounts. Three overarching themes, called “Silence”, “Otherness and power” and “Transition across time and space”, and 12 subthemes were identified. Nine learning points were offered, following a critical discussion of issues around silence, embodied trauma, cultural and linguistic differences, subtle and overt forms of racism, and intersectional discrimination. The findings highlight the importance of multicultural competency, personal therapy from the outset of training, and fostering more secure attachments within the training setting
Social relation recognition in egocentric photostreams
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper proposes an approach to automatically categorize the social interactions of a user wearing a photo-camera (2fpm), by relying solely on what the camera is seeing. The problem is challenging due to the overwhelming complexity of social life and the extreme intra-class variability of social interactions captured under unconstrained conditions. We adopt the formalization proposed in Bugental’s social theory, that groups human relations into five social domains with related categories. Our method is a new deep learning architecture that exploits the hierarchical structure of the label space and relies on a set of social attributes estimated at frame level to provide a semantic representation of social interactions. Experimental results on the new EgoSocialRelation dataset demonstrate the effectiveness of our proposal.Peer ReviewedPostprint (author's final draft
- …