21 research outputs found

    Regulation of System x\u3csub\u3ec\u3c/sub\u3e\u3csup\u3e-\u3c/sup\u3e by Pharmacological Manipulation of Cellular Thiols

    Get PDF
    The cystine/glutamate exchanger (system xc-) mediates the transport of cystine into the cell in exchange for glutamate. By releasing glutamate, system xc- can potentially cause excitotoxicity. However, through providing cystine to the cell, it regulates the levels of cellular glutathione (GSH), the main endogenous intracellular antioxidant, and may protect cells against oxidative stress. We tested two different compounds that deplete primary cortical cultures containing both neurons and astrocytes of intracellular GSH, L-buthionine-sulfoximine (L-BSO), and diethyl maleate (DEM). Both compounds caused significant concentration and time dependent decreases in intracellular GSH levels. However; DEM caused an increase in radiolabeled cystine uptake through system xc- , while unexpectedly BSO caused a decrease in uptake. The compounds caused similar low levels of neurotoxicity, while only BSO caused an increase in oxidative stress. The mechanism of GSH depletion by these two compounds is different, DEM directly conjugates to GSH, while BSO inhibits γ-glutamylcysteine synthetase, a key enzyme in GSH synthesis. As would be expected from these mechanisms of action, DEM caused a decrease in intracellular cysteine, while BSO increased cysteine levels. The results suggest that negative feedback by intracellular cysteine is an important regulator of system xc- in this culture system

    Pituitary Adenylate Cyclase-Activating Polypeptide Orchestrates Neuronal Regulation Of The Astrocytic Glutamate-Releasing Mechanism System x\u3csub\u3ec\u3c/sub\u3e\u3csup\u3e−\u3c/sup\u3e

    Get PDF
    Glutamate signaling is achieved by an elaborate network involving neurons and astrocytes. Hence, it is critical to better understand how neurons and astrocytes interact to coordinate the cellular regulation of glutamate signaling. In these studies, we used rat cortical cell cultures to examine whether neurons or releasable neuronal factors were capable of regulating system xc-(Sxc), a glutamate-releasing mechanism that is expressed primarily by astrocytes and has been shown to regulate synaptic transmission. We found that astrocytes cultured with neurons or exposed to neuronal-conditioned media displayed significantly higher levels of Sxc activity. Next, we demonstrated that the pituitary adenylate cyclase-activating polypeptide (PACAP) may be a neuronal factor capable of regulating astrocytes. In support, we found that PACAP expression was restricted to neurons, and that PACAP receptors were expressed in astro-cytes. Interestingly, blockade of PACAP receptors in cultures comprised of astrocytes and neurons significantly decreased Sxc activity to the level observed in purified astrocytes, whereas application of PACAP to purified astrocytes increased Sxc activity to the level observed in cultures comprised of neurons and astrocytes. Collectively, these data reveal that neurons coordinate the actions of glutamate-related mechanisms expressed by astrocytes, such as Sxc, a process that likely involves PACAP

    Seasonal Plasticity in GABA\u3csup\u3eA\u3c/sup\u3e Signaling is Necessary for Restoring Phase Synchrony in the Master Circadian Clock Network

    Get PDF
    Annual changes in the environment threaten survival, and numerous biological processes in mammals adjust to this challenge via seasonal encoding by the suprachiasmatic nucleus (SCN). To tune behavior according to day length, SCN neurons display unified rhythms with synchronous phasing when days are short, but will divide into two sub-clusters when days are long. The transition between SCN states is critical for maintaining behavioral responses to seasonal change, but the mechanisms regulating this form of neuroplasticity remain unclear. Here we identify that a switch in chloride transport and GABAA signaling is critical for maintaining state plasticity in the SCN network. Further, we reveal that blocking excitatory GABAA signaling locks the SCN into its long day state. Collectively, these data demonstrate that plasticity in GABAA signaling dictates how clock neurons interact to maintain environmental encoding. Further, this work highlights factors that may influence susceptibility to seasonal disorders in humans

    Regulation of System x

    Get PDF
    The cystine/glutamate exchanger (system xc-) mediates the transport of cystine into the cell in exchange for glutamate. By releasing glutamate, system xc- can potentially cause excitotoxicity. However, through providing cystine to the cell, it regulates the levels of cellular glutathione (GSH), the main endogenous intracellular antioxidant, and may protect cells against oxidative stress. We tested two different compounds that deplete primary cortical cultures containing both neurons and astrocytes of intracellular GSH, L-buthionine-sulfoximine (L-BSO), and diethyl maleate (DEM). Both compounds caused significant concentration and time dependent decreases in intracellular GSH levels. However; DEM caused an increase in radiolabeled cystine uptake through system xc-, while unexpectedly BSO caused a decrease in uptake. The compounds caused similar low levels of neurotoxicity, while only BSO caused an increase in oxidative stress. The mechanism of GSH depletion by these two compounds is different, DEM directly conjugates to GSH, while BSO inhibits γ-glutamylcysteine synthetase, a key enzyme in GSH synthesis. As would be expected from these mechanisms of action, DEM caused a decrease in intracellular cysteine, while BSO increased cysteine levels. The results suggest that negative feedback by intracellular cysteine is an important regulator of system xc- in this culture system

    Behavioral Assessment of Acute Inhibition of System x\u3csub\u3ec\u3c/sub\u3e\u3csup\u3e -\u3c/sup\u3e in rats

    Get PDF
    Rationale Gaps in our understanding of glutamatergic signaling may be key obstacles in accurately modeling complex CNS diseases. System xc - is an example of a poorly understood component of glutamate homeostasis that has the potential to contribute to CNS diseases. Objectives This study aims to determine whether system xc - contributes to behaviors used to model features of CNS disease states. Methods In situ hybridization was used to map mRNA expression of xCT throughout the brain. Microdialysis in the prefrontal cortex was used to sample extracellular glutamate levels; HPLC was used to measure extracellular glutamate and tissue glutathione concentrations. Acute administration of sulfasalazine (8–16 mg/kg, IP) was used to decrease system xc - activity. Behavior was measured using attentional set shifting, elevated plus maze, open-field maze, Porsolt swim test, and social interaction paradigm. Results The expression of xCT mRNA was detected throughout the brain, with high expression in several structures including the basolateral amygdala and prefrontal cortex. Doses of sulfasalazine that produced a reduction in extracellular glutamate levels were identified and subsequently used in the behavioral experiments. Sulfasalazine impaired performance in attentional set shifting and reduced the amount of time spent in an open arm of an elevated plus maze and the center of an open-field maze without altering behavior in a Porsolt swim test, total distance moved in an open-field maze, or social interaction. Conclusions The widespread distribution of system xc - and involvement in a growing list of behaviors suggests that this form of nonvesicular glutamate release is a key component of excitatory signaling

    Genetic Disruption of System xc-Mediated Glutamate Release from Astrocytes Increases Negative-Outcome Behaviors While Preserving Basic Brain Function in Rat

    Get PDF
    The importance of neuronal glutamate to synaptic transmission throughout the brain illustrates the immense therapeutic potential and safety risks of targeting this system. Astrocytes also release glutamate, the clinical relevance of which is unknown as the range of brain functions reliant on signaling from these cells hasn\u27t been fully established. Here, we investigated system xc- (Sxc), which is a glutamate release mechanism with an in vivo rodent expression pattern that is restricted to astrocytes. As most animals do not express Sxc, we first compared the expression and sequence of the obligatory Sxc subunit xCT among major classes of vertebrate species. We found xCT to be ubiquitously expressed and under significant negative selective pressure. Hence, Sxc likely confers important advantages to vertebrate brain function that may promote biological fitness. Next, we assessed brain function in male genetically modified rats (MSxc) created to eliminate Sxc activity. Unlike other glutamatergic mechanisms, eliminating Sxc activity was not lethal and didn\u27t alter growth patterns, telemetry measures of basic health, locomotor activity, or behaviors reliant on simple learning. However, MSxc rats exhibited deficits in tasks used to assess cognitive behavioral control. In a pavlovian conditioned approach, MSxc rats approached a food-predicted cue more frequently than WT rats, even when this response was punished. In attentional set shifting, MSxc rats displayed cognitive inflexibility because of an increased frequency of perseverative errors. MSxc rats also displayed heightened cocaine-primed drug seeking. Hence, a loss of Sxc-activity appears to weaken control over nonreinforced or negative-outcome behaviors without altering basic brain function

    Sex, Stress, and Prefrontal Cortex: Influence of Biological Sex on Stress-Promoted Cocaine Seeking

    Get PDF
    Clinical reports suggest that females diagnosed with substance use disorder experience enhanced relapse vulnerability compared with males, particularly during stress. We previously demonstrated that a stressor (footshock) can potentiate cocaine seeking in male rats via glucocorticoid-dependent cannabinoid type-1 receptor (CB1R)-mediated actions in the prelimbic prefrontal cortex (PrL-PFC). Here, we investigated the influence of biological sex on stress-potentiated cocaine seeking. Despite comparable self-administration and extinction, females displayed a lower threshold for cocaine-primed reinstatement than males. Unlike males, footshock, tested across a range of intensities, failed to potentiate cocaine-primed reinstatement in females. However, restraint potentiated reinstatement in both sexes. While sex differences in stressor-induced plasma corticosterone (CORT) elevations and defensive behaviors were not observed, differences were evident in footshock-elicited ultrasonic vocalizations. CORT administration, at a dose which recapitulates stressor-induced plasma levels, reproduced stress-potentiated cocaine-primed reinstatement in both sexes. In females, CORT effects varied across the estrous cycle; CORT-potentiated reinstatement was only observed during diestrus and proestrus. As in males, CORT-potentiated cocaine seeking in females was localized to the PrL-PFC and both CORT- and restraint-potentiated cocaine seeking required PrL-PFC CB1R activation. In addition, ex vivo whole-cell electrophysiological recordings from female layer V PrL-PFC pyramidal neurons revealed CB1R-dependent CORT-induced suppression of inhibitory synaptic activity, as previously observed in males. These findings demonstrate that, while stress potentiates cocaine seeking via PrL-PFC CB1R in both sexes, sensitivity to cocaine priming injections is greater in females, CORT-potentiating effects vary with the estrous cycle, and whether reactivity to specific stressors may manifest as drug seeking depends on biological sex

    Characterization of the discriminable stimulus produced by 2-BFI: effects of imidazoline I(2)-site ligands, MAOIs, β-carbolines, agmatine and ibogaine

    No full text
    1. The molecular nature and functions of the I(2) subtype of imidazoline binding sites are unknown but evidence suggests an association with monoamine oxidase (MAO). Rats can distinguish the selective imidazoline I(2)-site ligand 2-BFI from vehicle in drug discrimination, indicating functional consequences of occupation of these sites. We have used drug discrimination to investigate the nature of the discriminable stimulus, especially in relation to MAO inhibition. 2. Following training to distinguish 2-BFI 7 mg kg(−1) i.p. from saline vehicle in two-lever operant-chambers, male Hooded Lister rats underwent sessions where test substances were given instead and the proportion of lever presses on the 2-BFI-associated lever (substitution) recorded. 3. 2-BFI; its cogeners BU216, BU224, BU226 and LSL60101; the reversible MAO-A inhibitors moclobemide and RO41-1049; the β-carbolines harmane, norharmane and harmaline which also reversibly inhibit MAO-A, and the anti-addictive substance ibogaine exhibited potent, dose-dependent substitution for 2-BFI. 4. Agmatine, and LSL60125 substituted at one dose only. The reversible MAO-B inhibitors lazabemide and RO16-1649; the σ(2)-site ligand SKF10,047 and the I(2A)-site ligand, amiloride, failed to substitute. The irreversible inhibitor of MAO, deprenyl, substituted for 2-BFI while clorgyline did not. 5. These results suggest imidazoline I(2) site ligands produce a common discriminable stimulus that appears associated with reversible inhibition of MAO-A rather than MAO-B, possibly through increases in extracellular concentration of one or more monoamines. Ibogaine exhibits a commonality in its subjective effects with those of I(2)-site ligands

    Locomotor effects of imidazoline I(2)-site-specific ligands and monoamine oxidase inhibitors in rats with a unilateral 6-hydroxydopamine lesion of the nigrostriatal pathway

    No full text
    1. The present study examined the ability of the selective imidazoline I(2)-site ligands 2-(-2-benzofuranyl)-2-imidazoline (2-BFI) and 2-[4,5-dihydroimidaz-2-yl]-quinoline (BU224) and selected monoamine oxidase (MAO) inhibitors to evoke locomotor activity in rats bearing a lesion of the nigrostriatal pathway. 2. Male Sprague–Dawley rats were injected with 12.5 μg 6-hydroxydopamine (6-OHDA) into the right median forebrain bundle to induce a unilateral lesion of the nigrostriatal tract. After 6 weeks, test drugs were administered either alone or in combination with L-DOPA (L-3,4-dihydroxyphenylamine) and the circling behaviour of animals was monitored as an index of anti-Parkinsonian activity. 3. Intraperitoneal (i.p.) administration of the irreversible MAO-B inhibitor deprenyl (20 mg kg(−1)) or the imidazoline I(2)-site ligands BU224 (14 mg kg(−1)) and 2-BFI (7 and 14 mg kg(−1)) produced significant increases in ipsiversive rotations compared to vehicle controls totaling, at the highest respective doses tested, 521±120, 131±37 and 92.5±16.3 net contraversive rotations in 30 (deprenyl) or 60 (BU224 and 2-BFI) min. In contrast, the reversible MAO-A inhibitor moclobemide (2.5–10 mg kg(−1)) and the reversible MAO-B inhibitor lazabemide (2.5–10 mg kg(−1)) failed to instigate significant rotational behaviour compared to vehicle. 4. Coadministration of lazabemide (10 mg kg(−1)), moclobemide (10 mg kg(−1)) or 2-BFI (14 mg kg(−1)) with L-DOPA (20 mg kg(−1)) significantly increased either the duration or total number of contraversive rotations emitted over the testing period in comparison to L-DOPA alone. 5. These data suggest that I(2)-specific ligands have dual effects in the 6-OHDA-lesioned rat model of Parkinson's disease; a first effect associated with an increase in activity in the intact hemisphere, probably via an increase in striatal dopamine content, and a secondary action which, through the previously documented inhibition of MAO-A and/or MAO-B, increases the availability of dopamine produced by L-DOPA

    Biological significance of agmatine, an endogenous ligand at imidazoline binding sites

    No full text
    corecore