6,041 research outputs found
Black Holes in Einstein-Aether Theory
We study black hole solutions in general relativity coupled to a unit
timelike vector field dubbed the "aether". To be causally isolated a black hole
interior must trap matter fields as well as all aether and metric modes. The
theory possesses spin-0, spin-1, and spin-2 modes whose speeds depend on four
coupling coefficients. We find that the full three-parameter family of local
spherically symmetric static solutions is always regular at a metric horizon,
but only a two-parameter subset is regular at a spin-0 horizon. Asymptotic
flatness imposes another condition, leaving a one-parameter family of regular
black holes. These solutions are compared to the Schwarzschild solution using
numerical integration for a special class of coupling coefficients. They are
very close to Schwarzschild outside the horizon for a wide range of couplings,
and have a spacelike singularity inside, but differ inside quantitatively. Some
quantities constructed from the metric and aether oscillate in the interior as
the singularity is approached. The aether is at rest at spatial infinity and
flows into the black hole, but differs significantly from the the 4-velocity of
freely-falling geodesics.Comment: 22 pages, 6 figures; v2: minor editing; v3: corrected overall sign in
twist formula and an error in the equation for the aether stress tensor.
Results unchanged since correct form was used in calculations; v4: corrected
minor typ
Agrp neuron activity is required for alcohol-induced overeating
Alcohol intake associates with overeating in humans. This overeating is a clinical concern, but its causes are puzzling, because alcohol (ethanol) is a calorie-dense nutrient, and calorie intake usually suppresses brain appetite signals. The biological factors necessary for ethanol-induced overeating remain unclear, and societal causes have been proposed. Here we show that core elements of the brain’s feeding circuits—the hypothalamic Agrp neurons that are normally activated by starvation and evoke intense hunger—display electrical and biochemical hyperactivity on exposure to dietary doses of ethanol in brain slices. Furthermore, by circuit-specific chemogenetic interference in vivo, we find that the Agrp cell activity is essential for ethanol-induced overeating in the absence of societal factors, in single-housed mice. These data reveal how a widely consumed nutrient can paradoxically sustain brain starvation signals, and identify a biological factor required for appetite evoked by alcohol
Broadening of coreceptor usage by human immunodeficiency virus type 2 does not correlate with increased pathogenicity in an in vivo model.
The pathogenic properties of four primary human immunodeficiency virus type 2 (HIV-2) isolates and two primary HIV-2 biological clones were studied in an in vivo human-to-mouse chimeric model. The cell-associated viral load and the ability to reduce the severity of the induced graft-versus-host disease symptoms, the CD4/CD8 ratio and the level of repopulation of the mouse tissues by the graft, were determined. All HIV-2 strains, irrespective of their in vitro biological phenotype, replicated to high titres and significantly reduced graft-versus-host disease symptoms as well as the CD4/CD8 ratios. Reduction of graft repopulation caused by infection with the respective HIV-2 strains showed that the in vitro replication rate, syncytium-inducing capacity and ability to infect human macrophages did influence the in vivo pathogenic potential whereas broadening of coreceptor usage did not
Equivalence of black hole thermodynamics between a generalized theory of gravity and the Einstein theory
We analyze black hole thermodynamics in a generalized theory of gravity whose
Lagrangian is an arbitrary function of the metric, the Ricci tensor and a
scalar field. We can convert the theory into the Einstein frame via a
"Legendre" transformation or a conformal transformation. We calculate
thermodynamical variables both in the original frame and in the Einstein frame,
following the Iyer--Wald definition which satisfies the first law of
thermodynamics. We show that all thermodynamical variables defined in the
original frame are the same as those in the Einstein frame, if the spacetimes
in both frames are asymptotically flat, regular and possess event horizons with
non-zero temperatures. This result may be useful to study whether the second
law is still valid in the generalized theory of gravity.Comment: 14 pages, no figure
A Higher Dimensional Stationary Rotating Black Hole Must be Axisymmetric
A key result in the proof of black hole uniqueness in 4-dimensions is that a
stationary black hole that is ``rotating''--i.e., is such that the stationary
Killing field is not everywhere normal to the horizon--must be axisymmetric.
The proof of this result in 4-dimensions relies on the fact that the orbits of
the stationary Killing field on the horizon have the property that they must
return to the same null geodesic generator of the horizon after a certain
period, . This latter property follows, in turn, from the fact that the
cross-sections of the horizon are two-dimensional spheres. However, in
spacetimes of dimension greater than 4, it is no longer true that the orbits of
the stationary Killing field on the horizon must return to the same null
geodesic generator. In this paper, we prove that, nevertheless, a higher
dimensional stationary black hole that is rotating must be axisymmetric. No
assumptions are made concerning the topology of the horizon cross-sections
other than that they are compact. However, we assume that the horizon is
non-degenerate and, as in the 4-dimensional proof, that the spacetime is
analytic.Comment: 24 pages, no figures, v2: footnotes and references added, v3:
numerous minor revision
Exact Results for a Three-Body Reaction-Diffusion System
A system of particles hopping on a line, singly or as merged pairs, and
annihilating in groups of three on encounters, is solved exactly for certain
symmetrical initial conditions. The functional form of the density is nearly
identical to that found in two-body annihilation, and both systems show
non-mean-field, ~1/t**(1/2) instead of ~1/t, decrease of particle density for
large times.Comment: 10 page
Coherent State path-integral simulation of many particle systems
The coherent state path integral formulation of certain many particle systems
allows for their non perturbative study by the techniques of lattice field
theory. In this paper we exploit this strategy by simulating the explicit
example of the diffusion controlled reaction . Our results are
consistent with some renormalization group-based predictions thus clarifying
the continuum limit of the action of the problem.Comment: 20 pages, 4 figures. Minor corrections. Acknowledgement and reference
correcte
Crossover from Rate-Equation to Diffusion-Controlled Kinetics in Two-Particle Coagulation
We develop an analytical diffusion-equation-type approximation scheme for the
one-dimensional coagulation reaction A+A->A with partial reaction probability
on particle encounters which are otherwise hard-core. The new approximation
describes the crossover from the mean-field rate-equation behavior at short
times to the universal, fluctuation-dominated behavior at large times. The
approximation becomes quantitatively accurate when the system is initially
close to the continuum behavior, i.e., for small initial density and fast
reaction. For large initial density and slow reaction, lattice effects are
nonnegligible for an extended initial time interval. In such cases our
approximation provides the correct description of the initial mean-field as
well as the asymptotic large-time, fluctuation-dominated behavior. However, the
intermediate-time crossover between the two regimes is described only
semiquantitatively.Comment: 21 pages, plain Te
Design and Implementation of a Distributed Platform for Sharing IP Flow Records
Experiments using real traffic traces are of key importance in many network management research fields, such as traffic characterization, intrusion detection, and accounting. Access to such traces is often restricted due to privacy issues; research institutions typically have to sign non-disclosure agreements before accessing such traces from a network operator. Having such restrictions, researchers rarely have more than one source of traffic traces on which to run and validate their experiments.
Therefore, this paper develops a Distributed Platform for Sharing IP Flows (DipSIF) based on NetFlow records between multiple institutions. It is assumed that NetFlow traces collected by each participant are archived on separate storage hosts within their premises and then made available to others using a server that acts as a gateway to the storage. Due to privacy reasons the platform presented here uses a prefix-preserving, cryptography-based, and consistent anonymization algorithm in order to comply to different regulations determining the exchange of traffic traces data
- …