3 research outputs found
Supramolecular Luminescent Sensors
There is great need for stand-alone luminescence-based chemosensors that exemplify selectivity, sensitivity, and applicability and that overcome the challenges that arise from complex, real-world media. Discussed herein are recent developments toward these goals in the field of supramolecular luminescent chemosensors, including macrocycles, polymers, and nanomaterials. Specific focus is placed on the development of new macrocycle hosts since 2010, coupled with considerations of the underlying principles of supramolecular chemistry as well as analytes of interest and common luminophores. State-of-the-art developments in the fields of polymer and nanomaterial sensors are also examined, and some remaining unsolved challenges in the area of chemosensors are discussed
A Paper-Based Device for Ultrasensitive, Colorimetric Phosphate Detection in Seawater
High concentrations of certain nutrients, including phosphate, are known to lead to undesired algal growth and low dissolved oxygen levels, creating deadly conditions for organisms in marine ecosystems. The rapid and robust detection of these nutrients using a colorimetric, paper-based system that can be applied on-site is of high interest to individuals monitoring marine environments and others affected by marine ecosystem health. Several techniques for detecting phosphate have been reported previously, yet these techniques often suffer from high detection limits, reagent instability, and the need of the user to handle toxic reagents. In order to develop improved phosphate detection methods, the commonly used molybdenum blue reagents were incorporated into a paper-based, colorimetric detection system. This system benefited from improved stabilization of the molybdenum blue reagent as well as minimal user contact with toxic reagents. The colorimetric readout from the paper-based devices was analyzed and quantified using RGB analyses (via ImageJ), and resulted in the detection of phosphate at detection limits between 1.3 and 2.8 ppm in various aqueous media, including real seawater
A polycationic pillar[5]arene for the binding and removal of organic toxicants from aqueous media
The ability to bind and detect analytes with high levels of selectivity, sensitivity and broad applicability for a variety of analytes is an essential goal, with applications in public health and environmental remediation. Methods to achieve effective binding and detection include electrochemical, and spectroscopic methods. The use of supramolecular chemistry to accomplish such detection, by binding a target in a host and transducing that binding into a measurable signal, has advantages, including tunability of the sensor and the ability to rationally design hosts through an understanding of non-covalent interactions. Reported herein is the design and use of pillar[5]arenes to accomplish precisely such detection. Water-soluble pillar[5]arenes containing 10 cationic linker arms on their periphery bound toxicants in their hydrophobic cores with association constants of 105–106M−1. With the use of cationic exchange resins, the pillar[5]arene hosts were removed from solution with their encapsulated guests, allowing for effective toxicant removal