6 research outputs found

    A Brief Comparative Study on Removal of Toxic Dyes by Different Types of Clay

    Get PDF
    Increasing amount of organic dyes in the ecosystem particularly in wastewater has propelled the search for more efficient low-cost bio adsorbents. Different techniques have been used for the treatment of wastewater containing toxic dyes such as: biological degradation, oxidation, adsorption, reverse osmosis, and membrane filtration. Among all these processes mentioned, adsorption with low cost adsorbents has been recognized as one of the cost effective and efficient techniques for treatment of industrial wastewater from organic and inorganic pollutants. Clays as material adsorbents for the removal of various toxic dyes from aqueous solutions as potential alternatives to activated carbons has recently received widespread attention because of the environmental-friendly nature of clay materials. This chapter presents a comprehensive account of the techniques used for the removal of industrial cationic and anionic dyes from water during the last 10 years with special reference to the adsorption by using low cost materials in decontamination processes. Effects of different adsorption parameters on the performance of clays as adsorbents have been also discussed. Various challenges encountered in using clay materials are highlighted and a number of future prospects for the adsorbents are proposed

    Adsorption of Metal Ions from Single and Binary Aqueous Systems on Bio-Nanocomposite, Alginate-Clay

    No full text
    The aim of this work is to characterize and evaluate the retention of Cu2+ and Ni2+ from single and binary systems by alginate-Moroccan clay bio-composite with the utilization of calcium chloride as a cross-linking agent, using the ionotropic gelation method. The bio-nanocomposite was characterized by using a variety of techniques (SEM, EDX, XRD, and pHPZC). The efficiency of the adsorbent was investigated under different experimental conditions by varying parameters such as pH, initial concentration, and contact time. To demonstrate the adsorption kinetics, various kinetic models were tried and assessed, including pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models. The research results show that the adsorption process of Cu2+ and Ni2+ metal ions follows a pseudo-second-order kinetic model, and the corresponding rate constants were identified. To evaluate the parameters related to the adsorption process in both single and binary systems, different mathematical models of isotherms, such as Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich, were investigated. The correlation coefficients obtained showed that the most suitable isotherm for describing this adsorption process is the Langmuir model. The process is considered to be physical and endothermic, as suggested by the positive values of ΔH° and ΔS°, indicating increased randomness at the solid/liquid interface during Cu2+ and Ni2+ adsorption. Furthermore, the spontaneity of the process is confirmed by the negative values of ∆G°. The bio-nanocomposite beads demonstrated a maximum adsorption capacity of 370.37 mg/g for Ni2+ and 454.54 mg/g for Cu2+ in the single system. In the binary system, the maximum adsorption capacities were observed to be 357.14 mg/g for Ni2+ and 370.37 mg/g for Cu2+. There is significant evidence for the use of alginate-Moroccan clay bio-nanocomposite as a cost-effective alternative adsorbent for the efficient removal of metal ions in single and binary systems

    Factor design methodology for modelling and optimization of carcinogenic acid dye adsorption onto Moroccan prickly pear cactus peel

    No full text
    In this study, the modelling and optimization studies of the carcinogenic acid dye sorption from aqueous solutions were carried out using the Factor Design Methodology. This methodology provides a predictive model of the response in the range of variables studied and determines the optimum conditions for the best performance. The sorption of acid dye AB113 on Moroccan prickly pear cactus peel (MPPCP) was chosen as a case study of a typical removal process. Minitab17 software was used to study the effects of adsorption parameters, including initial dye concentration, solution pH, adsorbent dose, contact time, and temperature. Analysis of variance (ANOVA) was used to evaluate the experimental results obtained. The studied parameters at two levels (-1 and +1) were coded as X1, X2, X3, X4 and X5, consecutively. The optimum conditions obtained for the adsorption of AB113 dye were: 1 g for the mass of MPPCP, 6 for the initial solution pH, 180 min for the contact time and 20 mg/L for the initial dye concentration. The results show that the model is well adapted to the experimental data, indicating the suitability of the model and the success of the factorial design methodology in optimizing the adsorption conditions

    Kinetic and equilibrium isotherm studies for the removal of acid blue 113 dye by dried

    No full text
    Water pollution is an alarming problem in developing countries. Dried algae can be considered as potential and suitable bio-sorbents due to their fast and easy growth and high availability. The special surface properties of these algae allow them to adsorb different types of organic and inorganic pollutants from solutions. In this context, the removal of anionic acid blue 113 dye (AB113) from aqueous solutions by dried Corallina officinalis alga as low-cost bio-sorbent was chosen as a case study of a typical remediation process of water contaminants. The effect of various environmental and physicochemical parameters has been studied. The results show that the equilibrium adsorption was established within 120 min. The sorption phenomenon was investigated by determining the process kinetics at different concentrations and the adsorption isotherms at different temperatures. The kinetics results showed that the pseudo second-order kinetics model generates the best agreement with the experimental data. The modeling results showed that linear Langmuir and Freundlich models appear to fit the adsorption data better than Temkin model for the adsorption of AB113 onto dried C. officinalis alga. It can be concluded that C. Officinalis alga can be successfully used as adsorbent
    corecore