60 research outputs found
Screening for Type 1 Diabetes in the General Population:A Status Report and Perspective
Most screening programs to identify individuals at risk for type 1 diabetes have targeted relatives of people living with the disease to improve yield and feasibility. However, ∼90% of those who develop type 1 diabetes do not have a family history. Recent successes in disease-modifying therapies to impact the course of early-stage disease have ignited the consideration of the need for and feasibility of population screening to identify those at increased risk. Existing population screening programs rely on genetic or autoantibody screening, and these have yielded significant information about disease progression and approaches for timing for screening in clinical practice. At the March 2021 Type 1 Diabetes TrialNet Steering Committee meeting, a session was held in which ongoing efforts for screening in the general population were discussed. This report reviews the background of these efforts and the details of those programs. Additionally, we present hurdles that need to be addressed for successful implementation of population screening and provide initial recommendations for individuals with positive screens so that standardized guidelines for monitoring and follow-up can be established
The Near Infrared Imager and Slitless Spectrograph for JWST -- V. Kernel Phase Imaging and Data Analysis
Kernel phase imaging (KPI) enables the direct detection of substellar
companions and circumstellar dust close to and below the classical (Rayleigh)
diffraction limit. We present a kernel phase analysis of JWST NIRISS full pupil
images taken during the instrument commissioning and compare the performance to
closely related NIRISS aperture masking interferometry (AMI) observations. For
this purpose, we develop and make publicly available the custom "Kpi3Pipeline"
enabling the extraction of kernel phase observables from JWST images. The
extracted observables are saved into a new and versatile kernel phase FITS file
(KPFITS) data exchange format. Furthermore, we present our new and publicly
available "fouriever" toolkit which can be used to search for companions and
derive detection limits from KPI, AMI, and long-baseline interferometry
observations while accounting for correlated uncertainties in the model fitting
process. Among the four KPI targets that were observed during NIRISS instrument
commissioning, we discover a low-contrast (~1:5) close-in (~1 )
companion candidate around CPD-66~562 and a new high-contrast (~1:170)
detection separated by ~1.5 from 2MASS~J062802.01-663738.0. The
5- companion detection limits around the other two targets reach ~6.5
mag at ~200 mas and ~7 mag at ~400 mas. Comparing these limits to those
obtained from the NIRISS AMI commissioning observations, we find that KPI and
AMI perform similar in the same amount of observing time. Due to its 5.6 times
higher throughput if compared to AMI, KPI is beneficial for observing faint
targets and superior to AMI at separations >325 mas. At very small separations
(<100 mas) and between ~250-325 mas, AMI slightly outperforms KPI which suffers
from increased photon noise from the core and the first Airy ring of the
point-spread function.Comment: 34 pages, 17 figures, accepted for publication in PAS
The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. IV. Aperture Masking Interferometry
The James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 μm wavelengths, and a bright limit of ≃4 mag in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is ≃8 W2 (4.6 μm) magnitudes. AMI NRM and KPI achieve an inner working angle of ∼70 mas, which is well inside the ∼400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths.</p
The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. IV. Aperture Masking Interferometry
The James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 μm wavelengths, and a bright limit of ≃4 mag in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is ≃8 W2 (4.6 μm) magnitudes. AMI NRM and KPI achieve an inner working angle of ∼70 mas, which is well inside the ∼400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths
The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. IV. Aperture Masking Interferometry
The James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 μm wavelengths, and a bright limit of ≃4 mag in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is ≃8 W2 (4.6 μm) magnitudes. AMI NRM and KPI achieve an inner working angle of ∼70 mas, which is well inside the ∼400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths
The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope. IV. Aperture Masking Interferometry
The James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 μm wavelengths, and a bright limit of ≃4 mag in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed. We also present key results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI) technique benefits from AMI operational strategies, we also cover NIRISS KPI methods and analysis techniques, including a new user-friendly KPI pipeline. The NIRISS KPI bright limit is ≃8 W2 (4.6 μm) magnitudes. AMI NRM and KPI achieve an inner working angle of ∼70 mas, which is well inside the ∼400 mas NIRCam inner working angle for its circular occulter coronagraphs at comparable wavelengths.</p
The Near Infrared Imager and Slitless Spectrograph for the James Webb Space Telescope -- IV. Aperture Masking Interferometry
The James Webb Space Telescope's Near Infrared Imager and Slitless
Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first
such interferometer in space, operating at 3-5 \micron~wavelengths, and a
bright limit of magnitudes in W2. We describe the NIRISS Aperture
Masking Interferometry (AMI) mode to help potential observers understand its
underlying principles, present some sample science cases, explain its
operational observing strategies, indicate how AMI proposals can be developed
with data simulations, and how AMI data can be analyzed. We also present key
results from commissioning AMI. Since the allied Kernel Phase Imaging (KPI)
technique benefits from AMI operational strategies, we also cover NIRISS KPI
methods and analysis techniques, including a new user-friendly KPI pipeline.
The NIRISS KPI bright limit is W2 magnitudes. AMI (and KPI) achieve
an inner working angle of mas that is well inside the mas
NIRCam inner working angle for its circular occulter coronagraphs at comparable
wavelengths.Comment: 30 pages, 10 figure
The Parametric, Psychological, Neuropsychological, and Neuroanatomical Properties of Self and World Evaluation
Background: As an individual moves from adolescence to adulthood, they need to form a new sense of self as their environment changes from a limited to a more expansive structure. During this critical stage in development the last dramatic steps of neural development occur and numerous psychiatric conditions begin to manifest. Currently, there is no measure that aids in the quantification of how the individual is adapting to, and conceptualizing their role in, these new structures. To fill this gap we created the Self and World Evaluation Expressions Test(SWEET). Method: Sixty-five young adults (20.6 years-old), 36 with a history of drug use, completed the SWEET. A factor analysis was performed on the SWEET and the resultant factors were correlated with psychological, neuropsychological, and neuroanatomical battery that included both T1-wieghted and diffusion tensor magnetic resonance imaging scans. Results: We derived four factors: Self, Social-Emotional, Financial-Intellectual, and Spirituality. While showing limited relationships to psychological and neuropsychological measures, both white matter integrity and gray matter density showed significant relationships with SWEET factors. Conclusions: These findings suggest that while individual responses may not be indicative of psychological or cognitive processes they may relate to changes in brain structure. Several of these structures, such as the negative correlation of the affective impact of world with the dorsal anterior corpus callosum white matter integrity have been observed in psychiatri
An Analysis of the Employment Effects of the Washington High Technology Business and Occupation (B&O) Tax Credit: Technical Report
This paper estimates the effects of an R&D tax credit in the state of Washington on job creation. The research uses micro-data on the job creation and tax credits received by individual firms in the state of Washington from 2004 to 2009. We correct for the endogeneity of R&D tax credits received by individual firms by using instrumental variables based in part on national industry factor shares for R&D. We estimate that this tax credit created jobs, but at a high cost. The cost per job-year created is estimated to be between 50,000. The credit was so high cost in part because the credit was non-refundable. As a result, about one-quarter of the firms receiving credits were maxed out on credit eligibility, so that the credit provided no marginal incentive for additional R&D spending or job creation
- …