2 research outputs found

    Clinical characteristics of a large familial cohort with Medullary thyroid cancer and germline Cys618Arg RET mutation in an Israeli multicenter study

    Get PDF
    ObjectiveTo determine genealogical, clinical and pathological characteristics of a cohort with Cys618Arg mutation from an Israeli multicenter MTC study.MethodsRetrospective database analysis examining RET mutations and comparing Cys618Arg and Cys634Arg/Thr/Tyr subgroups.ResultsGenetic testing was performed in 131/275 MTC patients (47.6%). RET mutations were found in 50/131 (38.2%), including Cys618Arg (28/50 cases,56%), and Cys634Arg/Thr/Tyr (15/50,30%). Through genealogical study, 31 MTC patients were found descendants of one family of Jewish Moroccan descent, accounting for 27/28 patients with documented Cys618Arg mutation and 4 patients without available genetic testing. Familial Cys618Arg cases (n=31) and Cys634Arg/Thr/Tyr cases (n=15, from 6 families) were compared. Although surgical age was similar (25.7 vs 31.3 years, p=0.19), the Cys618Arg group had smaller tumors (8.9mm vs 18.5mm, p=0.004) and lower calcitonin levels (33.9 vs 84.5 X/ULN, p=0.03). Youngest ages at MTC diagnosis were 8 and 3 years in Cys618Arg and Cys634Arg/Thr/Tyr cohorts, respectively. Long-term outcome was similar between groups. The Cys618Arg cohort had lower rates of pheochromocytoma (6.5% vs 53.3%, p=0.001) and primary hyperparathyroidism (3.2% vs 33.3%, p=0.01).ConclusionThis is the first description of RET mutation distribution in Israel. Of 131 tested MTC patients, Cys618Arg was the predominant mutation. To the best of our knowledge, this is the largest cohort of Cys618Arg mutation described. For Cys618Arg and Cys634Arg/Thr/Tyr cohorts, MTC was diagnosed earlier than expected, likely due to familial genetic screening, and MTC outcomes were similar between groups. International studies are necessary to further characterize the clinical features of Cys618 mutations due to their relative rarity

    Influence of Fasting until Noon (Extended Postabsorptive State) on Clock Gene mRNA Expression and Regulation of Body Weight and Glucose Metabolism

    No full text
    The trend of fasting until noon (omission or delayed breakfast) is increasingly prevalent in modern society. This eating pattern triggers discordance between endogenous circadian clock rhythms and the feeding/fasting cycle and is associated with an increased incidence of obesity and T2D. Although the underlying mechanism of this association is not well understood, growing evidence suggests that fasting until noon, also known as an “extended postabsorptive state”, has the potential to cause a deleterious effect on clock gene expression and to disrupt regulation of body weight, postprandial and overall glycemia, skeletal muscle protein synthesis, and appetite, and may also lead to lower energy expenditure. This manuscript overviews the clock gene-controlled glucose metabolism during the active and resting phases and the consequences of postponing until noon the transition from postabsorptive to fed state on glucose metabolism, weight control, and energy expenditure. Finally, we will discuss the metabolic advantages of shifting more energy, carbohydrates (CH), and proteins to the early hours of the day
    corecore