22 research outputs found
Extracellular domain of CD98hc is required for early murine development
<p>Abstract</p> <p>Background</p> <p>The multifunctional protein CD98 heavy chain (CD98hc, Slc3a2) associates with integrin β1 through its cytoplasmic and transmembrane domains and the CD98hc-mediated integrin signaling is required for maintenance of ES cell proliferation. CD98hc-null mice exhibit early post-implantation lethality similar to integrin β1-null mice, supporting the importance of its interaction with integrin β1. On the other hand, the extracellular domain of CD98hc interacts with L-type amino acid transporters (LATs) and is essential for appropriate cell surface distribution of LATs. LATs mediate the transport of amino acids and other molecules such as thyroid hormone. In this respect, CD98hc may also affect development via these transporters.</p> <p>Results</p> <p>In this study, mice were generated from embryonic stem (ES) cell line (PST080) harboring a mutant CD98hc allele (CD98hc<sup>Δ/+</sup>). Expression of the CD98hc mutant allele results in ΔCD98hc-β geo fusion protein where extracellular C-terminal 102 amino acids of CD98hc are replaced with β geo. Analyses of PST080 ES cells as well as reconstituted frog oocytes demonstrated that ΔCD98hc-β geo fusion protein preserved its ability to interact with integrin β1 although this mutant protein was hardly localized on the cell surface. These findings suggest that ΔCD98hc-β geo protein can mediate integrin signaling but cannot support amino acid transport through LATs. CD98hc<sup>Δ/+ </sup>mice were normal. Although some of the implantation sites lacked embryonic component at E9.5, all the implantation sites contained embryonic component at E7.5. Thus, CD98hc<sup>Δ/Δ </sup>embryos are likely to die between E7.5 and E9.5.</p> <p>Conclusions</p> <p>Considering that CD98hc complete knockout (CD98hc<sup>-/-</sup>) embryos are reported to die shortly after implantation, our findings suggest potential stage-specific roles of CD98hc in murine embryonic development. CD98hc may be essential for early post-implantation development by regulating integrin-dependent signaling, while the other function of CD98hc as a component of amino acid transporters may be required for embryonic development at later stages.</p
Studies on Xenopus laevis intestine reveal biological pathways underlying vertebrate gut adaptation from embryo to adult
The developmental transcriptome of the Xenopus laevis intestine, from embryo to adult, reveals insights into the regulation of gut development in all vertebrates
Identification and Developmental Expression of Xenopus laevis SUMO Proteases
SUMO proteins are small ubiquitin-related modifiers. All SUMOs are synthesized as propeptides that are post-translationally cleaved prior to conjugation. After processing, SUMOs become covalently conjugated to cellular targets through a pathway that is similar to ubiquitination. Ubiquitin like protein proteases/Sentrin specific proteases (Ulp/SENPs) mediate both processing and deconjugation of SUMOs. The action of Ulp/SENPs makes SUMOylation a highly dynamic post-translational modification. To investigate how Ulp/SENPs are regulated in a developmental context, we isolated and characterized all Ulp/SENPs in Xenopus laevis. Xenopus possess homologues of mammalian SENP3, 5, 6 and 7. All of these enzymes reacted with HA-tagged vinyl sulfone derivatives of SUMO-2 (HA-SU2-VS) but not SUMO-1 (HA-SU1-VS), suggesting that they act primarily on SUMO-2 and -3. In contrast, Xenopus possess a single member of the SENP1/SENP2 subfamily of Ulp/SENPs, most closely related to mammalian SENP1. Xenopus SENP1 reacted with HA-SU1-VS and HA-SU2-VS, suggesting that it acts on all SUMO paralogues. We analyzed the mRNA and protein levels for each of the Ulp/SENPs through development; we found that they show distinct patterns of expression that may involve both transcriptional and post-transcriptional regulation. Finally, we have characterized the developmental function of the most abundant Ulp/SENP found within Xenopus eggs, SENP3. Depletion of SENP3 using morpholino antisense oligonucleotides (morpholinos) caused accumulation of high molecular weight SUMO-2/3 conjugated species, defects in developing embryos and changes in the expression of some genes regulated by the transforming growth factor beta (TGF-β) pathway. These findings collectively indicate that SUMO proteases are both highly regulated and essential for normal development
The response of the natriuretic peptide system to water deprivation in the desert rodent, Notomys alexis
Natriuretic peptides (NPs) are regulatory molecules that cause cGMP-mediated diuresis and natriuresis in mammals. Accordingly, it is interesting to consider their role in desert-adapted animals in which water is often limited. This study investigated the response of the natriuretic peptide (NP) system to varying periods of water deprivation (WD) in the Australian desert rodent species, Notomys alexis. It was hypothesised that the expression of the NP system will be down-regulated in water-deprived N. alexis compared to water-replete animals. The plasma levels of ANP were significantly reduced after 3 days of WD, but were unaffected by 7, 14 and 28 days of WD. Water deprivation for 3, 7, 14 days had a variable effect on the mRNA expression of ANP, CNP, NPR-A, NPR-B, and NPR-C, and a uniform down-regulation was not observed. However, after 28 days of WD, mRNA expression was similar to water-replete animals, except for NPR-A. Surprisingly, 7 and 14 days of WD caused an up-regulation in the ability of ANP to stimulate cGMP; this also occurred at 14 days for CNP. Taken together, the mRNA expression and peptide mediated guanylyl cyclase activity data after WD were in the opposite direction to what was predicted. Interestingly, after 28 days of WD, most parameters were similar to those of water-replete animals, which indicates that a down-regulation of the NP system is not part of the physiological response to an absence of free water in N. alexis.<br /
Participation of Brahma-Related Gene 1 (BRG1)-Associated Factor 57 and BRG1-Containing Chromatin Remodeling Complexes in Thyroid Hormone-Dependent Gene Activation during Vertebrate Development
Multiple cofactors and chromatin remodeling complexes have been identified to contribute to the transcriptional activation regulated by thyroid hormone receptors (TRs) in vitro. However, their role and function during development in vivo remains to be elucidated. The total dependence of amphibian metamorphosis on thyroid hormone (T3) provides a unique vertebrate model for studying the molecular mechanism of TR function in vivo. In this study, we show that the expression of Brahma-related gene 1 (BRG1), a chromatin-remodeling enzyme, is up-regulated at the climax of Xenopus laevis metamorphosis, whereas BRG1-associated factor 57 (BAF57), a BRG1-binding protein in BRG1-containing chromatin remodeling complexes, is constitutively expressed during development. Consistently, T3 treatment of premetamorphic tadpoles led to up-regulation of the expression of BRG1 but not BAF57. Studies using a reconstituted T3-dependent Xenopus oocyte transcription system, where we could study TR function in the context of chromatin, revealed that BRG1 enhances the transcriptional activation by ligand-bound TRs in a dose-dependent manner, whereas a remodeling-defective BRG1 mutant inhibited the activation, suggesting that this process relies on chromatin remodeling. Additional studies showed that BAF57 interacted with BRG1 in oocytes and enhanced gene activation by TR cooperatively with BRG1 in vivo. Chromatin immunoprecipitation revealed that BAF57 was recruited to the TR-regulated promoter in the presence of TR and T3. Together, these findings suggest a role of BRG1/BAF57-containing chromatin remodeling complexes in TR-regulated gene expression during postembryonic development
Inhibitory effects on osteoblast differentiation in vitro by the polychlorinated biphenyl mixture Aroclor 1254 are mainly associated with the dioxin-like constituents.
The polychlorinated biphenyl (PCB) mixture Aroclor 1254 alters bone tissue properties. However, the mechanisms responsible for the observed effects have not yet been clarified. This study compared the effect of Aroclor 1254 on the expression of osteoblast differentiation markers in MC3T3-E1 cells with the corresponding effect of the dioxin reference compound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and two PCB congeners belonging to the category of non-dioxin-like PCBs. The aim of the study was to quantify the relative influence of dioxin-like and non-dioxin-like PCB-components on osteoblast differentiation. Expression of marker genes for AhR activity and osteoblast differentiation were analyzed, and relative potency (REP) values were derived from Benchmark concentration-effect curves. Expression of alkaline phosphatase and osteocalcin were decreased by both Aroclor 1254 and TCDD exposure, while the PCB-congeners PCB19 and PCB52 slightly induced the expression. The relative potency of Aroclor 1254 for inhibitory effects on osteoblast differentiation marker genes was within the expected range as estimated from the chemical composition of Aroclor 1254. These results are consistent with previously observed bone modulations following in vivo exposure to Aroclor 1254 and TCDD, and demonstrate that the inhibitory effects of Aroclor 1254 on osteoblast differentiation by the dioxin-like constituents are over-riding the contribution of non-dioxin-like PCBs