730 research outputs found

    Lipid-coated zinc oxide nanocrystals as innovative ROS-generators for photodynamic therapy

    Get PDF
    Photodynamic Therapy (PDT) is a medical treatment that combines the administration of a nontoxic drug, called photosensitizer (PS), with light irradiation of the targeted region. It has been proposed as a new cancer therapy, promising better selectivity and fewer side-effects compared to traditional chemo- and radio-therapies. PSs indeed can accumulate specifically within the region of interest so that when the light is directly focused only in that region the therapeutic effect is highly localized. Traditional PSs, like chlorins and porphyrins, suffer from several drawbacks such as aggregation in biological media and poor biocompatibility. Thus, the development of innovative photosensitizers able to overcome these issues is crucial to the therapeutic action of PDT. Among the others, nanostructured Zinc Oxide (ZnO) has been recently proposed as new therapeutic agent and PS thanks to its semiconducting properties, biocompatible features, and ease of functionalization [1]. Nevertheless, further efforts are needed in order to improve its colloidal stability in biological media and to unravel the effective therapeutic mechanism. Here, we propose the synthesis and characterization of lipid-coated ZnO nanoparticles as new photosensitizer for cancer PDT [2]. First, by Dynamic Light Scattering (DLS) experiments, we show that the lipid-coating increases the colloidal stability of the ZnO NPs in Phosphate buffered saline (PBS). Then, using Electron Paramagnetic Resonance (EPR) coupled with the spin-trapping technique, we demonstrate and characterize the ability of bare and lipid-coated ZnO NPs to generate Reactive Oxygen Species (ROS) in water only when remotely actuated via light irradiation. Interestingly, our results aware that the surface chemistry of the NPs greatly influence the type of photo-generated ROS. Finally, we show that our NPs are effectively internalized inside human epithelial carcinoma cells (HeLa) via a lysosomal pathway and that they are able to generate ROS inside cancer cells. [1] B. Dumontel, M. Canta, H. Engelke, A. Chiodoni, L. Racca, A. Ancona, T. Limongi, G. Canavese and V. Cauda, ‎J. Mater. Chem. B. under revision. [2] A. Ancona, H. Engelke, N. Garino, B. Dumontel, W.Fazzini and V. Cauda, to be submitted. The support from ERC Starting Grant – Project N. 678151 “Trojananohorse” is gratefully acknowledged

    Enhanced Biostability and Cellular Uptake of Zinc Oxide Nanocrystals Shielded with Phospholipid Bilayer

    Get PDF
    The widespread use of ZnO nanomaterials for biomedical applications, including therapeutic drug delivery or stimuli-responsive activation, as well as imaging, imposes a careful control over the colloidal stability and long-term behaviour of ZnO in biological media. Moreover, the effect of ZnO nanostructures on living cells, in particular cancer cells, is still under debate. This paper discusses the role of surface chemistry and charge of zinc oxide nanocrystals, of around 15 nm in size, which influence their behaviour in biological fluids and effect on cancer cells. In particular, we address this problem by modifying the surface of pristine ZnO nanocrystals (NCs), rich of hydroxyl groups, with positively charged amino-propyl chains or, more innovatively, by self-assembling a double-lipidic membrane, shielding the ZnO NCs. Our findings show that the prolonged immersion in simulated human plasma and in the cell culture medium leads to highly colloidally dispersed ZnO NCs only when coated by the lipidic bilayer. In contrast, the pristine and amine-functionalized NCs form huge aggregates after already one hour of immersion. Partial dissolution of these two samples into potentially cytotoxic Zn2+ cations takes place, together with the precipitation of phosphate and carbonate salts on the NCs’ surface. When exposed to living HeLa cancer cells, higher amounts of lipid-shielded ZnO NCs are internalized with respect to the other samples, thus showing a reduced cytotoxicity, based on the same amount of internalized NCs. These results pave the way for the development of novel theranostic platforms based on ZnO NCs. The new formulation of ZnO shielded with a lipid-bilayer will prevent strong aggregation and premature degradation into toxic by-products, and promote a highly efficient cell uptake for further therapeutic or diagnostic functions

    Biomimetic Non-Immunogenic Nanoassembly for the Antitumor Therapy

    Get PDF
    Nanoassembly (1) for inducing apoptosis in cancer cells comprising: a core (2) comprising at least a nanoparticle of a nano structured and semiconductor metal oxide, said nanoparticle being monocrystalline or polycrystalline; a shell (3) formed by a double phospholipid layer and proteins derived from an extracellular biovesicole chosen between an exosome, an ectosome, a connectosome, an oncosome and an apoptotic body, and an oncosome, said core (2) being enclosed inside said shell (3); and a plurality of targeting molecules (4, 4', 4") of said cancer cells, preferably monoclonal antibodies (4, 4', 4"), said molecules (4, 4', 4") being anchored to the external surface of said biovesicole

    Biomimetic hybrid nanoconstructs for cancer therapy

    Get PDF

    A Bayesian palaeoenvironmental transfer function model for acidified lakes

    Get PDF
    A Bayesian approach to palaeoecological environmental reconstruction deriving from the unimodal responses generally exhibited by organisms to an environmental gradient is described. The approach uses Bayesian model selection to calculate a collection of probability-weighted, species-specific response curves (SRCs) for each taxon within a training set, with an explicit treatment for zero abundances. These SRCs are used to reconstruct the environmental variable from sub-fossilised assemblages. The approach enables a substantial increase in computational efficiency (several orders of magnitude) over existing Bayesian methodologies. The model is developed from the Surface Water Acidification Programme (SWAP) training set and is demonstrated to exhibit comparable predictive power to existing Weighted Averaging and Maximum Likelihood methodologies, though with improvements in bias; the additional explanatory power of the Bayesian approach lies in an explicit calculation of uncertainty for each individual reconstruction. The model is applied to reconstruct the Holocene acidification history of the Round Loch of Glenhead, including a reconstruction of recent recovery derived from sediment trap data.The Bayesian reconstructions display similar trends to conventional (Weighted Averaging Partial Least Squares) reconstructions but provide a better reconstruction of extreme pH and are more sensitive to small changes in diatom assemblages. The validity of the posteriors as an apparently meaningful representation of assemblage-specific uncertainty and the high computational efficiency of the approach open up the possibility of highly constrained multiproxy reconstructions

    La Imaginación y la Empatía como acercamiento al pasado lejano en la elaboración de materiales didácticos impresos sobre la Época Colonial de la Ciudad de San Luis

    Get PDF
    La enseñanza del pasado local lejano de la Ciudad de San Luis, en particular la Época Colonial, carece de materiales didácticos potentes que habiliten una entrada a la Historia que superen el análisis político-militar, propio de una historiografía tradicional y positivista. En este trabajo, relatamos y examinamos la producción de dos libros impresos elaborados por el Proyecto de Investigación "Memorias y Prácticas Educativas" de la Facultad de Ciencias Humanas, de la Universidad Nacional de San Luis sobre la Época Colonial de la Ciudad de San Luis. Estos materiales tienen como ejes el abordaje de la Historia desde la Vida Cotidiana, las Memorias Colectivas, el Patrimonio Cultural y la Narrativa Histórica, sustentados en dos herramientas históricas: la Imaginación y la Empatía. Se trata concretamente de: un libro ilustrado titulado "¿Cómo era... la Ciudad de San Luis en la Época Colonial?" y de un libro de cuentos denominado "Recreo al pasado. Cuentos para imaginar la Época Colonial de la Ciudad de San Luis". A lo largo del artículo relatamos la experiencia de elaboración de los dos libros, así como el proceso de validación, desde la utilización de metodologías múltiples permitiendo la confluencia y articulación de saberes y prácticas

    Optimal low-thrust trajectories to asteroids through an algorithm based on differential dynamic programming

    Get PDF
    In this paper an optimisation algorithm based on Differential Dynamic Programming is applied to the design of rendezvous and fly-by trajectories to near Earth objects. Differential dynamic programming is a successive approximation technique that computes a feedback control law in correspondence of a fixed number of decision times. In this way the high dimensional problem characteristic of low-thrust optimisation is reduced into a series of small dimensional problems. The proposed method exploits the stage-wise approach to incorporate an adaptive refinement of the discretisation mesh within the optimisation process. A particular interpolation technique was used to preserve the feedback nature of the control law, thus improving robustness against some approximation errors introduced during the adaptation process. The algorithm implements global variations of the control law, which ensure a further increase in robustness. The results presented show how the proposed approach is capable of fully exploiting the multi-body dynamics of the problem; in fact, in one of the study cases, a fly-by of the Earth is scheduled, which was not included in the first guess solution
    corecore