567 research outputs found

    A solution to the mu problem in the presence of a heavy gluino LSP

    Get PDF
    In this paper we present a solution to the ÎŒ\mu problem in an SO(10) supersymmetric grand unified model with gauge mediated and D-term supersymmetry breaking. A Peccei-Quinn symmetry is broken at the messenger scale M∌1012M\sim 10^{12} GeV and enables the generation of the ÎŒ\mu term. The boundary conditions defined at MM lead to a phenomenologically acceptable version of the minimal supersymmetric standard model with novel particle phenomenology. Either the gluino or the gravitino is the lightest supersymmetric particle (LSP). If the gravitino is the LSP, then the gluino is the next-to-LSP (NLSP) with a lifetime on the order of one month or longer. In either case this heavy gluino, with mass in the range 25 - 35 GeV, can be treated as a stable particle with respect to experiments at high energy accelerators. Given the extensive phenomenological constraints we show that the model can only survive in a narrow region of parameter space resulting in a light neutral Higgs with mass ∌86−91\sim 86 - 91 GeV and tan⁥ÎČ∌9−14\tan\beta \sim 9 - 14. In addition the lightest stop and neutralino have mass ∌100−122\sim 100 - 122 GeV and ∌50−72\sim 50 - 72 GeV, respectively. Thus the model will soon be tested. Finally, the invisible axion resulting from PQ symmetry breaking is a cold dark matter candidate.Comment: 30 pages, 9 figure

    Color Superconductivity from Supersymmetry

    Full text link
    A supersymmetric composite model of color superconductivity is proposed. Quarks and diquarks are dynamically generated as composite fields by a newly introduced strong gauge dynamics. It is shown that the condensation of the scalar component of the diquark supermultiplet occurs when the chemical potential becomes larger than some critical value. We believe that the model well captures aspects of the diquark condensate behavior and helps our understanding of the diquark dynamics in real QCD. The results obtained here might be useful when we consider a theory composed of quarks and diquarks.Comment: 4 pages, 2 figures, An error in Eq.(10) correcte

    Probing the nature of the seesaw in renormalizable SO(10)

    Full text link
    We study the nature of the see-saw mechanism in the context of renormalizable SO(10) with Higgs fields in the 10-plets and 126-plet representations, paying special attention to the supersymmetric case. We discuss analytically the situation for the second and third generations of fermions ignoring any CP violating phase. It is shown that b-tau unification and large atmospheric mixing angle strongly disfavor the dominance of the type I see-saw.Comment: 12 page

    Quark and Lepton Masses in 5D SO(10)

    Full text link
    We construct a five dimensional supersymmetric SO(10)×\timesD3_3 grand unified model with an S1/(Z2×Z2â€Č)S^1/(Z_2 \times Z^\prime_2) orbifold as the extra dimension. The orbifold breaks half of the supersymmetry and breaks the SO(10) gauge symmetry down to SU(4)C×SU(2)L×SU(2)R{\rm SU(4)}_C \times {\rm SU(2)}_L \times {\rm SU(2)}_R. The Higgs mechanism is used to break the remaining gauge symmetry the rest of the way to the Standard Model. We place matter fields variously in the bulk and on the orbifold fixed points and the resulting massless fields are mixtures between these brane and bulk fields. A chiral adjoint field in the bulk gets a U(1)X_X vacuum expectation value, resulting in an XX-dependent localization of the bulk matter fields and the Standard Model Higgs field. This Higgs field localization allows us to simultaneously explain the hierarchies mu<mdm_u < m_d and mt≫mbm_t \gg m_b. The model uses 11 parameters to fit the 13 independent low energy observables of the quark and charged lepton Yukawa matrices. The model predicts the values of two quark mass combinations, \f{m_u}{m_c} and mdmsmbm_d m_s m_b, each of which are predicted to be approximately 1σ1 \sigma above their experimental values. The remaining observables are successfully fit at the 5% level.Comment: 52 pages, published version, includes more discussion of 6D version of mode

    Professional management in irrigation systems: A case study of performance control in Mahaweli System H, Sri Lanka

    Get PDF
    Performance evaluation / Control systems / Case studies / Monitoring / Decision making / Water management / Irrigation management / Sri Lanka / Mahaweli Project

    Searching for Strongly Interacting Massive Particles (SIMPs)

    Get PDF
    We consider laboratory experiments that can detect stable, neutral strongly interacting massive particles (SIMPs). We explore the SIMP annihilation cross section from its minimum value (restricted by cosmological bounds) to the barn range, and vary the mass values from a GeV to a TeV. We calculate, as a function of the SIMP-nucleon cross section, the minimum nucleon number A for which there should be binding in a nucleus. We consider accelerator mass spectrometry with a gold (A=200) target, and compute the likely abundance of anomalous gold nuclei if stable neutral SIMPs exist. We also consider the prospects and problems of detecting such particles at the Tevatron. We estimate optimistically that such detection might be possible for SIMPs with SIMP-nucleon cross sections larger than 0.1 millibarn and masses between 25 and 50 GeV.Comment: RevTeX, 10 pages, 3 figures; Minor updates to match published versio

    Unification in 5D SO(10)

    Full text link
    Gauge unification in a five dimensional supersymmetric SO(10) model compactified on an orbifold S1/(Z2×Z2â€Č)S^1/(Z_2 \times Z_2^{\prime}) is studied. One orbifolding reduces N=2 supersymmetry to N=1, and the other breaks SO(10) to the Pati-Salam gauge group \ps. Further breaking to the standard model gauge group is made through the Higgs mechanism on one of the branes. The differences of the three gauge couplings run logarithmically even in five dimensions and we can keep the predictability for unification as in four dimensional gauge theories. We obtain an excellent prediction for gauge coupling unification with a cutoff scale M∗∌3×1017M_* \sim 3 \times 10^{17} GeV and a compactification scale Mc∌1.5×1014M_c \sim 1.5 \times 10^{14} GeV. Finally, although proton decay due to dimension 5 operators may be completely eliminated, the proton decay rate in these models is sensitive to the placement of matter multiplets in the 5th dimension, as well as to the unknown physics above the cutoff scale.Comment: 33 pages, one reference added and fig. 3 caption correcte

    Neutrinos in 5D SO(10) Unification

    Full text link
    We study neutrino physics in a 5D supersymmetric SO(10) GUT. We analyze several different choices for realizing the See-Saw mechanism. We find that the "natural" scale for the Majorana mass of right-handed neutrinos depends critically on whether the right-handed neutrinos are located in the bulk or localized on a brane. In the former case, the effective Majorana mass is "naturally" of order the compactification scale, about 10^{14} GeV. Note, this is the value necessary for obtaining a light tau neutrino mass approximately 10^{-2} eV which, within the context of hierarchical neutrino masses, is the right order of magnitude to explain atmospheric neutrino oscillations. On the other-hand when the right-handed neutrino is localized on the brane, the effective Majorana mass is typically larger than the compactification scale. Nevertheless with small parameters of order 1/10 - 1/30, an effective Majorana mass of order 10^{14} GeV can be accommodated. We also discuss the constraints on model building resulting from the different scenarios for locating the right-handed neutrinos.Comment: 24 page

    An analysis of a Heavy Gluino LSP at CDF : The Heavy Gluino Window

    Get PDF
    In this paper we consider a heavy gluino to be the lightest supersymmetric particle [LSP]. We investigate the limits on the mass of a heavy gluino LSP, using the searches for excess events in the jets plus missing momentum channel in Run I. The neutral and charged R-hadrons, containing a heavy gluino LSP, have distinct signatures at the Fermilab Tevatron. The range of excluded gluino masses depends on whether the R-hadron is charged or neutral and the amount of energy deposited in the hadronic calorimeter. The latter depends on the energy loss per collision in the calorimeter and the number of collisions; where both quantities require a model for R-hadron- Nucleon scattering. We show how the excluded range of gluino mass depends on these parameters. We find that gluinos with mass in the range between ∌35\sim 35 GeV and ∌115\sim 115 GeV are excluded by CDF Run I data. Combined with previous results of Baer et al., which use LEP data to exclude the range 3 - 22∌\sim25 GeV, our result demonstrates that an allowed window for a heavy gluino with mass between 25 and 35 GeV is quite robust. Finally we discuss the relevant differences of our analysis of Tevatron data to that of Baer et al.Comment: 36 pages, 11 figures, added an acknowledgemen

    Serum levels of mature microRNAs in DICER1-mutated pleuropulmonary blastoma.

    Get PDF
    DICER1 is a critical gene in the biogenesis of mature microRNAs, short non-coding RNAs that derive from either -3p or -5p precursor microRNA strands. Germline mutations of DICER1 are associated with a range of human malignancies, including pleuropulmonary blastoma (PPB). Additional somatic 'hotspot' mutations in the microRNA processing ribonuclease IIIb (RNase IIIb) domain of DICER1 are reported in cancer, and which affect microRNA biogenesis, resulting in a -3p mature microRNA strand bias. Here, in a germline (exon11 c.1806_1810insATTGA) DICER1-mutated PPB, we first confirmed the presence of an additional somatic RNase IIIb hotspot mutation (exon25 c.5425G>A [p.G1809R]) by conventional sequencing. Second, we investigated serum levels of mature microRNAs at the time of PPB diagnosis, and compared the findings with serum results from a comprehensive range of pediatric cancer patients and controls (n=52). We identified a panel of 45 microRNAs that were present at elevated levels in the serum at the time of PPB diagnosis, with a significant majority noted be derived from the -3p strand (P=0.013). In addition, we identified a subset of 10 serum microRNAs (namely miR-125a-3p, miR-125b-2-3p, miR-380-5p, miR-125b-1-3p, let-7f-2-3p, let-7a-3p, let-7b-3p, miR-708-3p, miR-138-1-3p and miR-532-3p) that were most abundant in the PPB case. Serum levels of two representative microRNAs, miR-125a-3p and miR-125b-2-3p, were not elevated in DICER1 germline-mutated relatives. In the PPB case, serum levels of miR-125a-3p and miR-125b-2-3p increased before chemotherapy, and then showed an early reduction following treatment. These microRNAs may offer future utility as serum biomarkers for screening patients with known germline DICER1 mutations for early detection of PPB, and for potential disease-monitoring in cases with confirmed PPB.We would like to thank the following for providing financial support: SPARKS (NC, MJM), Medical Research Council Fellowship (MJM), TD Bank/LDI scholarship (LdK), Alex’s Lemonade Stand Foundation (WDF), Cancer Research UK (NC) and European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 310018 (MT).This is the final published version. It first appeared at http://www.nature.com/oncsis/journal/v3/n2/full/oncsis20141a.html
    • 

    corecore