5 research outputs found

    Recombination and localization: Unfolding the pathways behind conductivity losses in Cs<sub>2</sub>AgBiBr<sub>6</sub> thin films

    No full text
    Cs2AgBiBr6 (CABB) has been proposed as a promising nontoxic alternative to lead halide perovskites. However, low charge carrier collection efficiencies remain an obstacle for the incorporation of this material in optoelectronic applications. In this work, we study the optoelectronic properties of CABB thin films using steady state and transient absorption and reflectance spectroscopy. We find that optical measurements on such thin films are distorted as a consequence of multiple reflections within the film. Moreover, we discuss the pathways behind conductivity loss in these thin films, using a combination of microsecond transient absorption spectroscopy and time-resolved microwave conductivity measurements. We demonstrate that a combined effect of carrier loss and localization results in the conductivity loss in CABB thin films. Moreover, we find that the charge carrier diffusion length and grain size are of the same order of magnitude. This suggests that the material's surface is an important contributor to charge-carrier loss.ChemE/Opto-electronic Material

    Radiative and Nonradiative Recombination in CuInS<sub>2</sub> Nanocrystals and CuInS<sub>2</sub>-Based Core/Shell Nanocrystals

    No full text
    Luminescent copper indium sulfide (CIS) nanocrystals are a potential solution to the toxicity issues associated with Cd- and Pb-based nanocrystals. However, the development of high-quality CIS nanocrystals has been complicated by insufficient knowledge of the electronic structure and of the factors that lead to luminescence quenching. Here we investigate the exciton decay pathways in CIS nanocrystals using time-resolved photoluminescence and transient absorption spectroscopy. Core-only CIS nanocrystals with low quantum yield are compared to core/shell nanocrystals (CIS/ZnS and CIS/CdS) with higher quantum yield. Our measurements support the model of photoluminescence by radiative recombination of a conduction band electron with a localized hole. Moreover, we find that photoluminescence quenching in low-quantum-yield nanocrystals involves initially uncoupled decay pathways for the electron and hole. The electron decay pathway determines whether the exciton recombines radiatively or nonradiatively. The development of high-quality CIS nanocrystals should therefore focus on the elimination of electron traps.ChemE/Opto-electronic Material

    High-Throughput Characterization of Single-Quantum-Dot Emission Spectra and Spectral Diffusion by Multiparticle Spectroscopy

    No full text
    In recent years, quantum dots (QDs) have emerged as bright, color-tunable light sources for various applications such as light-emitting devices, lasing, and bioimaging. One important next step to advance their applicability is to reduce particle-to-particle variations of the emission properties as well as fluctuations of a single QD’s emission spectrum, also known as spectral diffusion (SD). Characterizing SD is typically inefficient as it requires time-consuming measurements at the single-particle level. Here, however, we demonstrate multiparticle spectroscopy (MPS) as a high-throughput method to acquire statistically relevant information about both fluctuations at the single-particle level and variations at the level of a synthesis batch. In MPS, we simultaneously measure emission spectra of many (20-100) QDs with a high time resolution. We obtain statistics on single-particle emission line broadening for a batch of traditional CdSe-based core-shell QDs and a batch of the less toxic InP-based core-shell QDs. The CdSe-based QDs show significantly narrower homogeneous line widths, less SD, and less inhomogeneous broadening than the InP-based QDs. The time scales of SD are longer in the InP-based QDs than in the CdSe-based QDs. Based on the distributions and correlations in single-particle properties, we discuss the possible origins of line-width broadening of the two types of QDs. Our experiments pave the way to large-scale, high-throughput characterization of single-QD emission properties and will ultimately contribute to facilitating rational design of future QD structures.ChemE/Opto-electronic Material

    Trapping and Detrapping in Colloidal Perovskite Nanoplatelets: Elucidation and Prevention of Nonradiative Processes through Chemical Treatment

    No full text
    Metal-halide perovskite nanocrystals show promise as the future active material in photovoltaics, lighting, and other optoelectronic applications. The appeal of these materials is largely due to the robustness of the optoelectronic properties to structural defects. The photoluminescence quantum yield (PLQY) of most types of perovskite nanocrystals is nevertheless below unity, evidencing the existence of nonradiative charge-carrier decay channels. In this work, we experimentally elucidate the nonradiative pathways in CsPbBr3 nanoplatelets, before and after chemical treatment with PbBr2 that improves the PLQY. A combination of picosecond streak camera and nanosecond time-correlated single-photon counting measurements is used to probe the excited-state dynamics over 6 orders of magnitude in time. We find that up to 40% of the nanoplatelets from a synthesis batch are entirely nonfluorescent and cannot be turned fluorescent through chemical treatment. The other nanoplatelets show fluorescence, but charge-carrier trapping leads to losses that are prevented by chemical treatment. Interestingly, even without chemical treatment, some losses due to trapping are mitigated because trapped carriers spontaneously detrap on nanosecond-to-microsecond timescales. Our analysis shows that multiple nonradiative pathways are active in perovskite nanoplatelets, which are affected differently by chemical treatment with PbBr2. More generally, our work highlights that in-depth studies using a combination of techniques are necessary to understand nonradiative pathways in fluorescent nanocrystals. Such understanding is essential to optimize synthesis and treatment procedures.ChemE/Opto-electronic Material

    In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals

    No full text
    Oriented attachment of PbSe nanocubes can result in the formation of two-dimensional (2D) superstructures with long-range nanoscale and atomic order. This questions the applicability of classic models in which the superlattice grows by first forming a nucleus, followed by sequential irreversible attachment of nanocrystals, as one misaligned attachment would disrupt the 2D order beyond repair. Here, we demonstrate the formation mechanism of 2D PbSe superstructures with square geometry by using in situ grazing-incidence X-ray scattering (small angle and wide angle), ex situ electron microscopy, and Monte Carlo simulations. We observed nanocrystal adsorption at the liquid/gas interface, followed by the formation of a hexagonal nanocrystal monolayer. The hexagonal geometry transforms gradually through a pseudo-hexagonal phase into a phase with square order, driven by attractive interactions between the {100} planes perpendicular to the liquid substrate, which maximize facet-to-facet overlap. The nanocrystals then attach atomically via a necking process, resulting in 2D square superlattices.ChemE/Opto-electronic Material
    corecore